• 제목/요약/키워드: Position Synchronous Control

검색결과 307건 처리시간 0.028초

영구자석 동기전동기의 모델 추종 위치제어 (Position Control of Permanent Magnet Synchronous Motor Using Model Following)

  • 윤병도;김윤호;김기용;이인용;윤명균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.160-163
    • /
    • 1991
  • Permanent Magnet Synchronous Motor(PMSM) has merits in both simple electrical controllability of dc motor and mechanical reliability of ac motor by applying vector control. The vector control method orients the armature current phasor to be perpendicular to the permenant magnet rotor flux in a two-axis coordinate frame, and provides control characteristics that are similar to those of separately excited dc motors. This paper presents a simple model following scheme for position control of PMSM fed by hysteresis current-controlled PWM inverter. The simulation results show the validity of the proposed control method.

  • PDF

영구자석형 동기전동기의 회전자 위치 추정 (Estimation of Rotor Positions in a Permanent-Magnet Synchronous Motor)

  • 노명규;김대연;김명곤;박영우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.170-172
    • /
    • 2014
  • Permanent-magnet (PM) synchronous motors consist of PM rotors and ferromagnetic stators. When the rotor displaces from the center position, the air-gap magnetic field distorts, which result in unbalanced magnetic pull (UMP). In order to control the UMP and thereby reduce the vibration of a PM motor, it is necessary to measure the radial position of the rotor. In this paper, we propose a sensing method that utilizes linear Hall devices which replace the discrete Hall switches used for commutation. The results show the feasibility of the proposed sensing method.

  • PDF

IPMSM의 고성능 드라이브를 위한센서리스 벡터제어 (Sensorless Vector Control for High performance Drive of IPMSM)

  • 이정철;정동화
    • 전기학회논문지P
    • /
    • 제51권3호
    • /
    • pp.126-131
    • /
    • 2002
  • This paper is proposed to position and speed control of interior permanent magnet synchronous motor(IPMSM) drive without mechanical sensor. The rotor position, which is an essential component of any vector control schemes, is calculated through the instantaneous stator flux position and an estimated flux value of rotating reference frame. A closed-loop state observer is implemented to compute the speed feedback signal. The validity of the proposed sensorless scheme is confirmed by simulation and its dynamic performance is examined in detail.

Sensorless Control of the Synchronous Reluctance Machine

  • Kilthau A.;Pacas J. M.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.768-772
    • /
    • 2001
  • The paper deals with the control of the synchronous reluctance machine without position sensor. A method for the computation of the transformation angle out of terminal voltages and currents is presented. The injection of test signals allows operation at zero speed. Fundamental for this control scheme is the exact modelling of the machine, where especially the saturable inductances are of central interest. The accuracy of the angle estimation method over the whole operating range including field-weakening is discussed in detail. The implementation of the angle estimation method in a rotor-oriented control scheme and practical results are demonstrated.

  • PDF

A High-Performance Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control

  • Kim Min-Huei;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee;Hwang Dong-Ha
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.355-359
    • /
    • 2001
  • This paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with DTC. The control system consists of stator flux observer, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by observed stator flux-linkage space vector. The estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. It does not require the knowledge of any motor parameters, nor particular care for motor starting, In order to prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed sensorless control system is shown a good speed control response characteristic results and high performance features in 50/1000 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

  • PDF

A High-Performnce Sensorloss Control System of Reluctance Synchronous Motor with Direct Torque Control by Consideration of Nonlinerarly Inductances

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • 제2권2호
    • /
    • pp.146-153
    • /
    • 2002
  • this paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The problem of DTC for high-dynamic performance RSM drive is generating a nonlinear torque due to a saturated nonlinear inductance curve with various load currents. The control system consists of stator flux observer, compensating inductance look-up table, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source unverter, and TMS320C31 DSP controller. The stator flux observer is based on the combined voltage and current model with stator flux feedback adapitve control that inputs are the compensated inductances, current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operation area. It does not requrie the knowledge of any montor paramenters, nor particular care for moter starting, In order to prove the suggested control algorithm, we have simulation and testing at actual experimental system. The developed sensorless control system is showing a good speed control response characterisitic result and high performance features in 20/1500 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

IPMSG을 이용한 풍력 발전 시스템의 최대 출력화 제어 특성 (Characteristics of Maximization Output Control for Variable Wind Generation System Using IPMSG)

  • 문상필;허영환;김종석;박한석
    • 전기학회논문지P
    • /
    • 제65권3호
    • /
    • pp.151-157
    • /
    • 2016
  • This paper proposes the variable wind generation system based on the direct torque control(DTC)for the interior permanent magnet synchronous generator. The proposed system can achieve the MPPT control without wind speed in addition to the speed and position sensorless control as well as the conventional current control method. The DTC has several advantages such as simply system configuration, ease of the flux weakening control and the sensorless control. The experimental results show the performance of the proposed wind generation system.

Sensorless Control for the Synchronous Reluctance Motor Using Reference Flux Estimation

  • Ahn Joon-Seon;Kim Sol;Kim Yong-Tae;Lee Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.324-330
    • /
    • 2005
  • The complex sensorless control scheme is not practical for use in the field of home appliance systems because it is not economical. Therefore, it is necessary to introduce a simplified sensorless control scheme that is composed of least calculation to estimate the rotor position. This paper presents the principle of the rotor position estimation with comparison of the estimated flux linkage and reference flux linkage. In order to verify the feasibility of the control scheme, ACSL is used for the simulation and TI DSP TMS320F240 is used for the experiment.

약계자 영역에서의 순시무효전력을 이용한 PMSM의 센서리스 제어 (Sensorless Control of a Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power in the Field-Weakening Region)

  • 이정흠;김영석;최양광
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권2호
    • /
    • pp.71-80
    • /
    • 2005
  • This paper presents the position sensorless vector control of a cylindrical permanent magnet synchronous motor(PMSM) in the field weakening region. The position sensorless algorithm using an instantaneous reactive power of the PMSM is proposed. An instantaneous reactive power can be obtained from the vector product of rotor currents and back emf of the PMSM. Back emf includes the information of rotor speed. So the estimated speed can be yielded from the voltage equation of the PMSM. In other words, the estimated speed is compensated by using an instantaneous reactive power. To extend the speed range of the PMSM in the constant horsepower region, the field weakening control is applied. The proposed algorithm is not affected by mechanical motor parameters because the mechanical equation is not used. The effectiveness of the proposed algorithm is verified by the experimental results.

효율 최적화 제어를 위한 SynRM의 위치 및 속도 센서리스 벡터제어 (Position and Speed Sensorless Vector Control of SynRM for Efficiency Optimization Control)

  • 이정철;정동화
    • 전자공학회논문지SC
    • /
    • 제39권6호
    • /
    • pp.59-70
    • /
    • 2002
  • 본 논문에서는 최적 효율과 고성능으로 동작하는 SynRM(Synchronous Reluctance Motor)을 위한 위치 및 속도 센서리스 벡터제어를 제시한다. 제시한 제어 방법은 고정자 전압과 전류의 자속 추정에 기초한다. 그리고 동손과 철손을 최소화하는 효율 최적화의 전류각 조건은 SynRM의 등가회로를 기초로 유도한다. 폐루프 위치 및 속도 제어의 연구결과는 최적화 제어의 입증하였다.