• 제목/요약/키워드: Position Prediction

검색결과 535건 처리시간 0.03초

이동체의 실시간 위치추적을 위한 PID제어 이동체 Spatio-Temporal 모델 알고리즘 (PID-controlled Moving Objects Spatio-Temporal Model Algorithm for Identifying the Location of a Mobile Object in Real-time)

  • 왕지;선양;이규호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.209-212
    • /
    • 2011
  • 삼각측량법은 전형적인 위치인식 방법으로, 최소 세 곳의 위치정보가 기인지된 기준점을 필요로 한다. 어떤 경우에는 통신도달 범위를 벗어날 수 있는 이유로 목표 노드로 부터 세 개의 기준 스테이션에 항상 통신 도달성이 제공되는 것은 아니다. 본 논문은 목표 노드가 모든 세 기준 스테이션을 접근할 수 없는 경우에도 실시간으로 이동 목표 노드의 위치를 추정할 수 있는 방법을 제시한다. 제시된 방법은 PID제어이동체 Spatio-Temporal 모델 알고리즘에 기반을 두고 있다. 이 방법은 이동체의 진행방향을 추정할 수 있고, 이러한 추정방향과 목표노드의 기 확인된 위치정보를 함께 활용하여 이동체의 정확한 위치를 판단할 수 있다.

  • PDF

플라이휠 에너지 저장장치 회전체계의 동역학적 설계및 해석 (Rotordynamic Design and Analysis of the Rotor-Bearing System of a 500Wh Flywheel Energy Storage Device)

  • 최상규;김영철;경진호
    • 소음진동
    • /
    • 제8권1호
    • /
    • pp.81-86
    • /
    • 1998
  • A 500Wh class high-speed Flywheel Energy Storage System (FESS) driven by a built-in BLDC motor/generator has been designed, which runs from 30000 to 60000rpm nominally. Due to the motor/generator inside, the flywheel rotor made of composites supported by PM/EM hybrid bearing system has a shape of bell or pendulum and thus requires accurate rotordynamic analysis and prediction of its dynamic behavior to secure the operating reliability. Rotordynamic analyses of the flywheel rotor-bearing system revealed that the bell shaped rotor has two conical rigid-body modes in the system operating range and the first conical mode, of which nodal point lies in the radial EM bearing position, can adversely affect the dynamic response of the rotor at the corresponding critical speed. To eliminate the possibility of wild behavior of the rotor, two guide bearings are adopted at the upper end of the rotor and motor/generator. It was also revealed that the EM bearing stiffness if 0.5~1.0E+6 N/m and damping of 2000 Ns/m are favirable for smooth operation of the system around the 2nd critical speed.

  • PDF

페달 종류 및 위치에 따른 최적 페달 레이아웃 설정 (Optimal Layout of Vehicle Pedals Depending on the Types and Positions of Vehicle Pedals)

  • 최정필;정의승;정성욱;정성욱
    • 대한인간공학회지
    • /
    • 제26권4호
    • /
    • pp.91-101
    • /
    • 2007
  • The purpose of this study is to propose an optimal layout for the accelerator and brake pedals in sedan and SUV, and also to compare the pendant-type pedal with organ-type pedal. 12 male subjects participated in the experiment, the subjects were divided into 3 groups according to height percentile(under 50%ile, 50%ile to 75%ile, over 75%ile). Independent variables were seat height (H30), X and Y coordinates of the center of accelerator and brake pedals and the x and y relative distance between two pedals. Dependent variable was subjective ratings for lower body discomfort. The response surface methodology using a central composite design was employed to develop a prediction model for lower body discomfort of each pedal. It is noticeable that the lateral position of the accelerator in all groups was not statistically significant. The optimal locations of both pedals were found to be distinct according to the percentile of subjects. X distance from accelerator to brake of both-type pedals is similar. But Y distance from accelerator to brake of organ-type is less about 2-3cm than that of pedant-type.

스파크 음원을 이용한 철도소음전파 예측에 관한 연구 (A Study on the Prediction of Train Noise Propagation Using the Spark Discharge Sound Source)

  • 주진수;김재철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.485-490
    • /
    • 2005
  • With the historical opening of the express rail, Korea has joined the league of France, Japan, Germany and Spain and entered into the super high-speed train era. Opening of the express rail will not only bring about enormous changes to the lives of Koreans, but it will also have a huge influence on the economic, social and cultural aspects of the country. With construction of the Seoul - Busan KTX line, railway passenger transportation capacity and freight transportation capacity will increase. Fast, safe, convenient and environmentally friendly, the express rail is a product of the latest technology and will secure its position as the newest and most preferred method of transportation for the next generation. As the traffic noise, train noise from KTX will become a social problems with the acceleration of speed and increase in the lines. In order to predict the train noise propagation from KTX, this paper presents the sound source system, the calculation model and the scale model experiment. Noise level unit patterns of a KTX that take the rolling noise, the motor noise and aerodynamic noise into consideration are simulated by the scale model experiment and numerical analysis.

  • PDF

동 다이캐스팅 고속 유도전동기의 불평형 응답 해석 (Unbalance Response Analysis of Copper Die Casting High Speed Induction Motor)

  • 홍도관;정승욱;우병철;구대현;안찬우
    • 한국소음진동공학회논문집
    • /
    • 제22권7호
    • /
    • pp.642-649
    • /
    • 2012
  • This paper deals with a copper die casting induction motor which has several advantages of motor performance. The developed motor is used as spindle motor in machining center. The dynamic characteristic analysis of rotor is dealt with for precision machining. The critical speed of rotor considering rotation and gyroscopic effect should be above operating speed, 18,000 rpm, and have a 201 % sufficient separation margin. Also, the 3-D unbalance vibration response analysis is performed and enabled the prediction of the expected vibration amplitude by unbalance in high speed. The unbalance vibration responses of each position on the rotor are satisfied with allowable vibration displacement of API 611 standard according to balancing G grade(G 0.4, G 2.5, G 6.3). Copper die casting high speed induction motor is successfully developed and verified by experiment.

간이 파인 블랭킹 금형의 개발을 통한 범용 유압 프레스에서의 원형 정밀진단 가공성 연구 (Development of Fine Blanking Die with Fluid Chamber and its Application to Procuction of Circular Blanks in a Hydraulic Press)

  • Kim, J.H.;Ryu, J.G.;Chung, W.J.
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.157-163
    • /
    • 1996
  • This paper is concered on the development of low-cost fine blanking die with two fluid chambers of which the pressure can be controlled by a hydraulic unit and its application to producting circular blanks in a conventional hydraulic press, not in a special triple-action press usually adopte in fine blanking operation. Four important working parameters affecting on the precision accuracy of products such as existence and position of Vee-ring, stripping force and counter punching force are primarily considered for experiments. Finite element analysis by suing ABAQUA software is approxi- mately made for blanking of circular specimen with a flat stripper plate and then compared with experimental measurements. The the theoretical prediction of camber height which represents deflection of a dish-shaped specimen after blanking seems to give a qualitatively good agreement. It is shown through experiments the the camber height decreases with decreasing stripping force and also with increasing counter punching force, but particularly depending on the latter much more than the former.

  • PDF

하이드로포밍 응용을 위한 벤딩튜브의 스프링백 특성 (Springback Characteristics of Bent Tubes for Hydroforming Applications)

  • 이호국;박성호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 제5회 박판성형 SYMPOSIUM
    • /
    • pp.45-48
    • /
    • 2006
  • Recently, the use of tubular hydroforming technology has seen increased usage and increased consideration for wide range of tubular automotive applications. In manufacturing hydroformed parts, bending and pre-forming operations are often required prior to the hydroforming process. Higher bending quality of bent tubes is crucial for the successful hydroforming operation because most of plastic strains and wall thinning at the extrados of bend area occur in the bending operation. Springback is also observed due to elastic recovery of tube material after bending. Proper correction of springback is required not only to well place the bent tube into a hydroforming die cavity but also to avoid pinching when the upper die is brought down to closing position. Therefore, prediction of springback at early development stage is one of the key factors to produce high quality hydroformed parts. In this study, a variety of bending experiments has been carried out to investigate springback amount under change in bending angle and material boosting. Throughout the experimental approach, springback characteristics of bent tubes are quantified according to the change in various bending parameters, and a mathematical model to predict correction amount of springback to a given bend angle is found.

  • PDF

개선된 회전형 레올로지 측정법을 이용한 박형 반도체 패키지 내에서의 3차원 몰드 유동현상 연구 (Full Three Dimensional Rheokinetic Modeling of Mold Flow in Thin Package using Modified Parallel Plate Rheometry)

  • 이민우;유민;유희열
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2003년도 기술심포지움 논문집
    • /
    • pp.17-20
    • /
    • 2003
  • The EMC's rheological effects on molding process are evaluated in this study. When considering mold processing for IC packages, the major concerning items in current studies are incomplete fill, severe wire sweeping and paddle shifts etc. To simulate EMC's fast curing rheokinetics with 3D mold flow behavior, one should select appropriate rheometry which characterize each EMC's rheological motion and finding empirical parameters for numerical analysis current studies present the new rheometry with parallel plate rheometry for reactive rheokinetic experiments, the experiment and numerical analysis is done with the commercial higher filler loaded EMC for the case of Thin Quad Plant Packages (TQFP) with package thickness below 1.0 mm. The experimental results and simulation results based on new rheometry matches well in point of the prediction of wire sweep, filling behavior of melt front advancement and void trapping position.

  • PDF

Air-Barrier Width Prediction of Interior Permanent Magnet Motor for Electric Vehicle Considering Fatigue Failure by Centrifugal Force

  • Kim, Sung-Jin;Jung, Sang-Yong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.952-957
    • /
    • 2015
  • Recently, the interior permanent magnet (IPM) motors for electric vehicle (EV) traction motor are being extensively researched because of its high energy density and high efficiency. The traction motor for EV requires high power and high efficiency at the wide driving region. Therefore, it is essential to fully consider the characteristics of the motor from low speed to high-speed driving regions. Especially, when the motor is driven at high speed, a significant centrifugal force is applied to the rotor. Thus, the rotor must be stably structured and be fully endured at the critical speed. In this paper, aims to examine the characteristics of the IPM motor by adjusting the width of air-barrier according to the permanent magnet position which is critical in designing an IPM motor for EV traction motors and to conduct a centrifugal force analysis for grasping mechanical safety.

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.