• Title/Summary/Keyword: Position Prediction

Search Result 530, Processing Time 0.039 seconds

A Study on the Estimation Accuracy of Energy Expenditure by Different Attaching Position of Accelerometer (가속도계의 부착위치에 따른 에너지 소비량의 예측 정확도에 관한 연구)

  • Kang, Dong-Won;Choi, Jin-Seung;Mun, Kyung-Ryoul;Bang, Yun-Hwa;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.179-186
    • /
    • 2009
  • This works studied to compare gas analyzer with accelerometer and the estimation of energy expenditure based on different attaching position of tri-axial accelerometer such as waist and top of the foot Based on the fact that oxygen intake increases more radically linearly during walking more than 8.0km/hr. 9 male subjects performed walking and running on the treadmill with speed of $1.5{\sim}8.5km$/hr and $4.5{\sim}13.0km$/hr, respectively. Commercially available Nike + iPod Sports kit was used to compare energy expenditure with sensor module attached to their foot. Actual energy expenditure was determined by a continuous direct gas analyzer and two multiple regression equations of walking and running mode for different attaching position were developed. Results showed that estimation accuracy of energy expenditure using waist mounted accelerometer was higher than that of the top of the foot and Nike + iPod Sports kit. Results of energy expenditure based on waist and top of the foot showed that the crossover state of energy expenditure occurred at 7.5km/hr. But Nike + iPod Sports kit could not find intersection of energy expenditure in all nine subjects. Therefore the sensor module attached to the waist and separate multi regression equation by walking and running mode was the best to estimate more accurate prediction.

Three-dimensional Numerical Modeling of Fluid Flow and Heat Transfer in Continuously Cast Billets (연속주조 빌렛의 3차원 열 및 유동해석)

  • Lee, Sung-Yoon;Lee, Sang-Mok;Park, Joong-Kil;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.290-299
    • /
    • 2000
  • A three-dimensional model was developed in order to simulate heat and fluid flow of a continuous casting billet. The model was coded with the general-purpose CFD program FIDAP, using the finite element method. The present model consists of 2 individual calculation schemes, named model 1 and model 2. Mold region only was calculated to check the pouring stream through submerged nozzle with model 1. Entire region, which consists of mold, secondary cooling, radiation cooling was calculated to predict crater end position, temperature profile and solid shell profile(model 2). Standard $k-{\bullet}\hat{A}$ turbulence model has been applied to simulate the turbulent flow induced by submerged nozzle. Enthalpy method was adopted for the latent heat of solidification. Fluid flow in mushy zone was treated using variable viscosity approach. The more casting speed and superheat increased, the more metallurgical length increased. The shell thickness at the mold exit is proved to be mainly controlled by superheat by the present simulation. It may be concluded that the present model can be successfully applied far the prediction of heat and fluid flow behavior in the continuous casting process.

  • PDF

Experimental Study for Prediction of Ground Vibration Responses by the Low-Vibration Pile Driving Methods (저진동 파일시공법에 따른 지반진동 응답 예측을 위한 실험적 연구)

  • Park, Sun-Joon;Kang, Sung-Hoo;Jung, Seug-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.201-207
    • /
    • 2010
  • In this study, the SIP (Soil-cement Injected precast Pile) method among the Low-vibration & Low-noise pile driving methods was decided into study compensation. Ground vibrations by the SIP methods step by step divide and were analyzed. Quantitative response values and ground vibration equations with reliability were presented from findings of this study. Also, vibration responses that are occurred by the SIP method of construction were compared as quantitative with vibration responses by general method of construction that are presented in existent study. Ground vibration values by the SIP method correspond to level of 17 ~ 57% of values that are assumed by the Attewell & Famer's equation, respectively, and these result compares in reliability 50% and separated distance 10 ~ 50 m. Also, those values were analyzed that correspond to level of 14 ~ 96% of ground vibration values by the Prof. Park's equation, respectively. Construction limit extents, separation distances from vibration occurs position, were presented that can satisfy domestic criteria for vibration control for the SIP methods. Those presented in this paper were divided newly according to reliability.

  • PDF

Performance of MTM in 2006 Typhoon Forecast (이동격자태풍모델을 이용한 2006년 태풍의 진로 및 강도 예측성능 평가)

  • Kim, Ju-Hye;Choo, Gyo-Myung;Kim, Baek-Jo;Won, Seong-Hee;Kwon, H. Joe
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.207-216
    • /
    • 2007
  • The Moving-nest Typhoon Model (MTM) was installed on the Korea Meteorological Administration (KMA)'s CRAY X1E in 2006 and started its test operation in August 2006 to provide track and intensity forecasts of tropical cyclones. In this study, feasibility of the MTM forecast is compared with the Global Data Assimilation and Prediction System (GDAPS) of the KMA and the operational typhoon forecast models in the Japan Meteorological Agency (JMA), from the sixth tropical cyclone to the twentieth in 2006. Forecast skills in terms of the storm position error of the two KMA models were comparable, but MTM showed a slightly better ability. While both GDAPS and MTM produced larger errors than JMA models in track forecast, the predicted intensity was much improved by MTM, making it comparable to the JMA's typhoon forecast model. It is believed that the Geophysical Fluid Dynamics Laboratory (GFDL) bogus initialization method in MTM improves the ability to forecast typhoon intensity.

A direct damage detection method using Multiple Damage Localization Index Based on Mode Shapes criterion

  • Homaei, F.;Shojaee, S.;Amiri, G. Ghodrati
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.183-202
    • /
    • 2014
  • A new method of multiple damage detection in beam like structures is introduced. The mode shapes of both healthy and damaged structures are used in damage detection process (DDP). Multiple Damage Localization Index Based on Mode Shapes (MDLIBMS) is presented as a criterion in detecting damaged elements. A finite element modeling of structures is used to calculate the mode shapes parameters. The main advantages of the proposed method are its simplicity, flexibility on the number of elements and so the accuracy of the damage(s) position(s), sensitivity to small damage extend, capability in prediction of required number of mode shapes and low sensitivity to noisy data. In fact, because of differential and comparative form of MDLIBMS, using noise polluted data doesn't have major effect on the results. This makes the proposed method a powerful one in damage detection according to measured mode shape data. Because of its flexibility, damage detection process in multi span bridge girders with non-prismatic sections can be done by this method. Numerical simulations used to demonstrate these advantages.

Assessment of Tip Shape Effect on Rotor Aerodynamic Performance in Hover

  • Hwang, Je Young;Kwon, Oh Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.295-310
    • /
    • 2015
  • In the present study, an unstructured mixed mesh flow solver was used to conduct a numerical prediction of the aerodynamic performance of the S-76 rotor in hover. For the present mixed mesh methodology, the near-body flow domain was modeled by using body-fitted prismatic/tetrahedral cells while Cartesian mesh cells were filled in the off-body region. A high-order accurate weighted essentially non-oscillatory (WENO) scheme was employed to better resolve the flow characteristics in the off-body flow region. An overset mesh technique was adopted to transfer the flow variables between the two different mesh regions, and computations were carried out for three different blade configurations including swept-taper, rectangular, and swept-taper-anhedral tip shapes. The results of the simulation were compared against experimental data, and the computations were also made to investigate the effect of the blade tip Mach number. The detailed flow characteristics were also examined, including the tip-vortex trajectory, vortex core size, and first-passing tip vortex position that depended on the tip shape.

A Model Predictive Controller for Nuclear Reactor Power

  • Na Man Gyun;Shin Sun Ho;Kim Whee Cheol
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.399-411
    • /
    • 2003
  • A model predictive control method is applied to design an automatic controller for thermal power control in a reactor core. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, the second optimal control input is not implemented and the procedure to solve the optimization problem is then repeated. The objectives of the proposed model predictive controller are to minimize the difference between the output and the desired output and the variation of the control rod position. The nonlinear PWR plant model (a nonlinear point kinetics equation with six delayed neutron groups and the lumped thermal-hydraulic balance equations) is used to verify the proposed controller of reactor power. And a controller design model used for designing the model predictive controller is obtained by applying a parameter estimation algorithm at an initial stage. From results of numerical simulation to check the controllability of the proposed controller at the $5\%/min$ ramp increase or decrease of a desired load and its $10\%$ step increase or decrease which are design requirements, the performances of this controller are proved to be excellent.

Boundary Line Extract for Moving Object Tracking (이동 물체 추적을 위한 경계선 추출)

  • Kim, Tea-Sik;Lee, Ju-Shin
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.2
    • /
    • pp.28-34
    • /
    • 1998
  • In this paper, I'd like to make a suggestion for boundary line detect algorithm which is used 3-D image processing system in order to track moving object. Through this study, more than anything else, difference image method was adopted to detect moving object in input image. To detect moving object, I made use of detect windows constructed by 4's predictive areas and object area for the purpose of reducing processing time and its size was determined by the size of moving object and prediction parameter directed center position. And also, tracking camera was movable toward the direction of X, Y by DC motor. As a conclusion of the study proposed algorithm, I found out the following results that tracking error was less than 6% of total moving object size and maximum tracking time 2 seconds by toy-car simulation.

  • PDF

구형 압력용기의 초소성 성형 공정에서 두께변화 예측에 관한 이론해석

  • Yoon, Jong-Hoon;Lee, Ho-Sung;Jang, Young-Soon;Yi, Yeong-Moo
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.133-141
    • /
    • 2003
  • When superplastic forming process is employed in manufacturing spherical pressure vessel, the thickness and spherical profile are not constant and varies during the forming process. In the current study, theoretical analysis for the prediction of thickness change was carried out under the consideration of membrane theory which has been employed in Kuglov et. al.'s study. Then the thickness of initial blank to obtain the required thickness at the final forming step, the time vs. pressure profile which yields uniform deformation in blank, and the thickness distribution according to the position at each forming step have been determined. The employed model and the developed analytical code were verified throughout comparing the theoretical predictions at each forming stage with the experimental results shown in literature.

  • PDF

Simultaneous source frequency phase referencing observations of H2O and SiO masers toward VX Sgr

  • Yoon, Dong-Hwan;Cho, Se-Hyung;Yun, Young-Joo;Choi, Yoon Kyung;Kim, Jaeheon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.40.3-41
    • /
    • 2015
  • We performed simultaneous observations of H2O and SiO masers toward VX Sgr using the Korean VLBI Network (KVN) and Source Frequency Phase Referencing (SFPR) method. The observations were carried out at 5 epochs from 2014 February to 2015 June. The relative locations of the SiO with respect to the H2O maser emission were determined at two epochs by SFPR for the first time. The H2O masers show well developed asymmetric outflow features which are spread up to ~300 mas in diameter. On the other hand, the SiO masers show a ring-like structure close to the central star with ~ 30 mas diameter. The SFPR observational results at two epochs (${\varphi}=0.83$ and 0.99) provide similar relative locations of H2O and SiO maser features. These superposed maps of H2O and SiO masers lead us to investigate the development of outflow motions from relatively spherical SiO maser regions close to central star to aspherical H2O maser regions according to optical phase of stellar pulsation together with the prediction of the position of central star.

  • PDF