• Title/Summary/Keyword: Position Feedback

Search Result 711, Processing Time 0.022 seconds

Sensorless Vector Control of IPMSM Drive with Adalptive Fuzzy Controller (적응 퍼지제어기에 의한 IPMSM 드라이브의 쎈서리스 벡터제어)

  • Kim Jong-Gwan;Park Byung-Sang;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.98-106
    • /
    • 2006
  • This paper proposes to position and speed control of interior Permanent magnet synchronous motor(IPMSM) drive without mechanical sensor. Also, this paper develops a adaptive fuzzy controller based fuzzy logic control for high performance of PMSM drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. A Gopinath observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of IPMSM, that employs a d-q rotating reference frame attached to the rotor. A Gopinath observer is implemented to compute the speed and position feedback signal. The validity of the proposed scheme is confirmed by various response characteristics.

Position Control of the Trolley and Spreader Using Pole-placement Method (극점배치기법을 이용한 트롤리 및 스프레더의 위치제어)

  • Lee, Tae-Young;Kim, Myun-Hee;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.165-172
    • /
    • 1999
  • Crane operation for transporting heavy loads causes swinging motion at the loads. This sway causes the suspension ropes to leave their grooves and leads to possibility of serious damages. Generally crane is operated by expert's knowledge. Therefore, a satisfactory control method to supress object sway during transport is indispensible. The dynamic behavior of the crane shows nonlinear characteristics. when the length of the rope is changed the crane is time varying system and the design of anti-sway controller is very difficult. In this paper, the nonlinear dynamic model for the industrial overhead crane is derived. and the feedback gain matrix based on the pole-placement method is proposed to supress the swing motion and control the position of the crane. The performance of the controller for the crane model is simulated on the personal computer.

  • PDF

Precision Position Control of a Fast Tool Servo Using Piezoelectric Actuators (압전 구동기를 이용한 미소절삭 공구대의 정밀위치제어)

  • Song, J.W.;Kim, S.H.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.50-57
    • /
    • 1997
  • A fast tool servo (FTS) for diamond turning improves machining accuracy by quickly compensating relative position errors between the cutter and the workpiece. Therefore, the FTS needs to have large band-width with good tracking performance. Serious hysteresis nonlinearity of PZT actuators used in the FTS, however, deteriorates fast tracking performance. Several types of feedforward hysteresis compensators and feedback controllers are tested to improve tracking performance. Through simulations and experiments, control structure which yields the smallest tracking error is selected. The maximum peak to peak error in tracking a sinusoidal waveform is reduced by one fifth compared to that of a regular PID controller.

  • PDF

A Study on design of Robot Manipulator and Application of Control Algorithm (로보트 매니퓰레이터(3-축)의 제작과 제어 알고리즘 적용에 관한 연구)

  • Lee, Hee-Jin;Kim, Seung-Woo;SaGong, Seong-Dae;Park, Mi-Gnon;Lee, Sang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.273-277
    • /
    • 1988
  • This paper is to show design of robot manipulator which has 3-link using DC Motor and realization of control algorithm with IBM - XT Micro-computer connected. Gentral algorithm is applicated by position and pass control using point-to-point method. At first, this paper computes required angles on each joint in order to search desired position or path, and uses a voltage control with feedback from output of encoder and tachometer in real time. The application of control algorithm on position, velocity and force for each joint of manipulator by using self-tuning control is left for next study.

  • PDF

MRAS Based Sensorless Speed Control of Permanent Magnet Synchronous Motor (MRAS에 의한 영구자석 동기전동기의 센서리스 속도제어)

  • 김영삼;권영안
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.541-547
    • /
    • 2003
  • Speed and torque controls of permanent magnet synchronous motors are usually attained by the application of position and speed sensors. However, speed and position sensors require the additional mounting space, reduce the reliability in harsh environments and increase the cost of a motor. Therefore, many studies have been peformed for the elimination of speed and position sensors. This paper investigates a novel speed sensorless control of a permanent magnet synchronous motor. The proposed control strategy is based on the MRAS(Model Reference Adaptive System) using the state observer model with the current error feedback and the magnet flux model as two models for the back-emf estimation. The proposed algorithm is verified through the simulation and experiment.

A Study on the Position Control of a Motor Cylinder with Nonlineal Friction (비선형 마찰을 갖는 전동 실린더의 위치제어에 관한 연구)

  • Byun, J.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.80-86
    • /
    • 2008
  • A motor cylinder apparatus is used to transfer a load in industrial applications. The apparatus is composed of a motor and power transmission elements such as worm gear and screw. In this case, the nonlinear friction of the transmission elements has a bad influence on the position control performance. To overcome this problem, the position control system consists of a feedback controller to achieve nominal control performance and a disturbance observer to compensate nonlinear friction. Especially the filter of a disturbance observer is designed from viewpoint of robust stability. Finally, the simulation result shows that the proposed control system is effective for the disturbance elimination as well as the friction compensation.

  • PDF

Induction Motor Position Control Using Integral-Compensating Variable Structure Control Algorithm (적분보상형 가변구조제어기법을 이용한 유도 전동기 위치제어)

  • 강문호;정경민;박윤창
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.205-209
    • /
    • 1999
  • This paper proposes a variable structure position controller for an induction motor(IM) which uses a reaching law and an integral compensating nonlinear switching function. With the reaching law, reaching mode can be established quantitatively during transient state so that dynamic control performance is improved. With the integral compensating nonlinear switching function, both very low overshoot and high steady state control accuracy can be obtained by compensating the states chattering problem due to the unmodelled dynamics of inverter and feedback sensors. For experiment a digital servo driver which consists of a DSP and an IPM inverter was developed. With the various experimental results, IM position control performance was verified.

  • PDF

Position Control of an Object Using Vision Sensor (비전 센서를 이용한 물체의 위치 제어)

  • Ha, Eun-Hyeon;Choi, Goon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.49-56
    • /
    • 2011
  • In recent years, owing to the development of the image processing technology, the research to build control system using a vision sensor is stimulated. However, the time delay must be considered, because it works of time to get the result of an image processing in the system. It can be seen as an obstacle factor to real-time control. In this paper, using the pattern matching technique, the location of two objects is recognized from one image which was acquired by a camera. And it is implemented to a position control system as feedback data. Also, a possibility was shown to overcome a problem of time delay using PID controller. A number of experiments were done to show the validity of this study.

Position Control of Magnetic Levitation Transfer System by Pitch Angle

  • Liu Ming-Zhao;Tsuji Teruo;Hanamoto Tsuyoshi
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.264-270
    • /
    • 2006
  • Magnetic levitation transfer systems are useful for transfer tools in clean rooms and positioning control systems with high precision because of frictionless characteristics. In this paper, the new method is proposed which is a sensorless position. At first, the magnetic levitation is performed by state feedback control with a disturbance observer for each of six axes of the movement of a levitated vehicle. The position of the vehicle is then estimated as the disturbance term of a disturbance observer for a pitch angle which is one of the control axes for the magnetic levitation. In addition, the positioning force is generated by the pitch angle control which gives a tilt to the levitated vehicle so that it generates the horizontal component of force.

Path Control with Energy-Saving Load-Sensing for a Cylinder-Load System Using Speed-Controlled Fixed Displacement Pump (속도제어-정용량 펌프를 사용하는 실린더-부하계의 에너지절약-부하감지형 경로제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.3
    • /
    • pp.16-22
    • /
    • 2009
  • This paper deals with the issue of robust position tracking control and energy-saving control for a valve-controlled cylinder system using speed-controlled fixed displacement pump. The whole feedback control system is composed of a pair of interconnected subsystems, that is, valve-controlled cylinder system and load-sensing control system. From experiments it is shown that position tracking control in the load sensing control system can accomplish significant reduction in input energy to pump comparing to a conventional valve-controlled cylinder system, while exhibiting the same position tracking control accuracy.

  • PDF