• Title/Summary/Keyword: Position Errors

Search Result 1,164, Processing Time 0.032 seconds

Robustness of Positive Position Feedback Control in the Independent Modal Space (독립된 모달공간에서 양 위치피드백 제어기법의 강인성)

  • 황재혁;백승호
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.177-185
    • /
    • 1994
  • In this study, the effect of parameter errors on the closed-loop behavior of flexible structure is analyzed for IMSC(Independent Modal Space Control) with PPF(Positive Position Feedback). If the control force designed on the basis of structure model with the parameter errors is applied to control the actual system, the closed-loop performance of the actural system will be degraded depending on the degree of the errors. An asymptotic stability condition has been derived, using Lyapunov approach, which is independent of the dynamic characteristics of the structure being controlled. The extent of deviation of the closed-loop performance from the designed one is also derived and evaluated using operator techniques. It has been found that the extent of the deviation is proportational to the magnitude of the parameter errors, and that the proportional coefficient depends on the control algorithm.

  • PDF

Monte-Carlo Simulation and measuring for Error Analysis of 3-axis SCARA Robot using Observability (관측성을 이용한 3축 SCARA Robot의 오차분석을 위한 Monte-Carlo simulation 및 측정)

  • Ju, Ji-Hun;Chung, Won-Jee;Kim, Jung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.8-14
    • /
    • 2008
  • This paper aims at finding out dominant robot configurations with maximal position errors, which can be attributed to the parameter errors, by using Monte-Carlo simulation for error analysis of a 3-axis SCARA(Selective Compliance Assembly Robot Arm) type robot. In particular, the Monte-Carlo simulation is used for virtually measuring on the position errors, instead of physical measurement. In order to measure the observability of the model parameters with respect to a set of robot configurations, we propose the observability index which is defined as the product of singular values for error propagation matrices. Thus the index can be used for discriminating dominant robot configurations from a set of simulated ones in conjunction with standard deviation of positional errors, This paper analyzed error by robot positional error.

Improvement of a Low Cost MEMS-based GPS/INS, Micro-GAIA

  • Fujiwara, Takeshi;Tsujii, Toshiaki;Tomita, Hiroshi;Harigae, Masatoshi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.265-270
    • /
    • 2006
  • Recently, inertial sensors like gyros and accelerometers have been quite miniaturized by Micro Electro-Mechanical Systems (MEMS) technology. JAXA is developing a MEM-based GPS/INS hybrid navigation system named Micro-GAIA. The navigation performance of Micro-GAIA was evaluated through off-line analysis by using flight test data. The estimation errors of the roll, pitch, and azimuth were $0.03^{\circ}$, $0.05^{\circ}$, $0.05^{\circ}$ $(1{\sigma})$, respectively. he horizontal position errors after 60-second GPS outages were reduced to 25 m CEP. The attitude errors and position errors are nearly half of ones reported previously[2]. Furthermore, using the adaptive Kalman filters, the robustness against the uncertainty of the measurement noise was improved. Comparing the innovation-based and residual-based adaptive Kalman filters, it was confirmed that the latter is robuster than the former.

  • PDF

Changes in Cervicocephalic Joint Position Sense in Sustained Forward Head Posture (지속적인 전방머리자세 시 머리-목 관절 위치 감각의 변화)

  • Jeong, Dawoon;Kim, Yongwook
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.2
    • /
    • pp.11-17
    • /
    • 2017
  • Purpose : The aim of this study was to verify differences in cervicocephalic joint position sense error after different sustained sitting postures in healthy young adults. Methods : Twenty-five healthy adults(12 men, 13 women) participated in this study. Repositioning errors of neck movement were observed in participants during joint repositioning tasks. During 2 test days with a 1-week interval, the participants performed forward head posture and upright sitting posture in random order. Both head-to-neutral(HTN) and head-to-target(HTT) tasks were performed on each day. On the first day, the participants sat slouched or upright for 10 minutes. Then, they sat upright and moved their heads at a self-selected speed with their eyes-closed to pre-determined neutral and target positions as accurately as possible. The participants noticed that when they reached a pre-determined position, the errors between pre-determined neutral and target positions and current position was recorded. The tasks consisted of flexion, extension and lateral bending. On the second day, the same test was performed after another sitting posture for 10 minutes. Repositioning error values were collected by using a smart phone-based inclinometer. The mean value for three trials was used for data analysis. A paired t-test was used for statistical analysis. Results : Significant differences in joint repositioning errors were found between the repositioning error after different sitting postures on the sagittal plane for both the HTN and HTT tasks (P<.05). No significant differences in errors on the coronal plane were found (P>.05). Conclusion : Cervicocephalic joint position sense can be affected by sitting postures, especially on the sagittal plane.

A Generalized Volumetric Error Modeling Considering Backlash in Machine Tools (방향성을 고려한 일반화된 공작기계의 입체오차 모델링)

  • Ahn, Kyoung-Gee;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.124-131
    • /
    • 2002
  • In this paper, an extended volumetric error model considering backlash in a three-axis machine tool was proposed and utilized for calculating the volumetric error of the machine tool at any position in three-dimensional workspace. Backlashes are interrelated; i.e. the angular backlash affects the straightness errors which then affect talc calculated squareness errors. Therefore, a new concept was introduced to define the backlash of squareness errors to incorporate the backlash of squareness error into the volumetric error, and the characteristics of the backlash of squareness error were investigated. The effects of backlash errors were assessed, by experiments. for 21 geometric errors of a machine tool. The backlash error was shown to be one of the systematic errors of a machine tool. And a generalized volumetric error model formulator for three-axis machine tools was developed, which allowed us to formulate machine tool synthesis error models far all possible machine tool configurations only with machine tool topology information. Based on these volumetric error model and model formulator, a computer-aided volumetric error analysis system was developed for a three-axis machine tool in this paper. Then the volumetric error at an arbitrary position can be obtained, and displayed in a three-dimensional graphic form.

Estimation of a Volumetric Error of a Machine Tool Considering the Moving Direction of a Machine Tool (방향성을 고려한 공작기계 입체오차의 평가)

  • 안경기;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.676-680
    • /
    • 2000
  • In this paper, an extended volumetric error model considering backlash in a three-axis machine tool was proposed and utilized for calculating the volumetric error of the machine tool at any position in three-dimensional workspace. Backlashes are interrelated; i.e. the angular backlash affects the straightness errors which then affect the calculated squareness errors. Therefore, a new concept was introduced to define the backlash of squareness errors to incorporate the backlash of squareness error into the volumetric error, and the characteristics of the backlash of squareness error were investigated. The effects of backlash errors were assessed, by experiments, fur 21 geometric errors of a machine tool. The backlash error was shown to be one of the systematic errors of a machine tool. Based on this volumetric error model, a computer-aided volumetric error analysis system was developed for a three-axis machine tool in this paper. Then the volumetric error at an arbitrary position can be obtained, and displayed in a three-dimensional graphic form.

  • PDF

A Study on FSA Application for Human Errors of Dynamic Positioning Vessels Incidents

  • Chae, Chong-Ju
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.259-268
    • /
    • 2017
  • Formal Safety Assessment (FSA) has been mostly implemented on the hardware aspects of vessels. Although there are guidelines regarding human error FSAs, there have not been many assessments in such areas. To this end, this study seeks to use precedent studies for the safe operation of DP vessels, conducting an FSA regarding human error of DP LOP (Loss of Position) incidents. For this, the study referred to precedent studies for the frequency of DP LOP incidents caused by human errors, adding the severity of LOP incidents, and then applying them to the Bayesian network. As a result, the study was able to confirm that among DP LOP incidents caused by human errors, the drive-off from skill-based errors was 74.3% and the drive-off from unsafe supervision was 50.5%. Based on such results, RCOs (Risk Control Options) were devised through a brainstorming session with experts coming up with proposals including providing mandatory DPO training, installing DP simulator on the vessels, drawing up measures to understanding the procedures for safe operation of DP vessels. Moreover, it was found that mandatory DPO training is reasonable in terms of cost benefits and that while installing a DP simulator is not suitable in terms of cost benefits, it can significantly reduce risks when operating DP vessels.

The Influence of Hand Muscle Fatigue and Fatigue Recovery on Joint Position Sense in Healthy Subjects

  • Lee, Na-Kyung;Son, Sung-Min
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.6
    • /
    • pp.425-429
    • /
    • 2014
  • Purpose: The first purpose of this study was to evaluate whether hand muscle fatigue alters sensorimotor control of the hand in healthy subjects, using hand position sense. The second objective was to assess the repositioning variables during a 7.5-min period after the fatigue protocol. Methods: Participants performed a repeated handgrip movement to induce the fatigue condition as fast as possible, until they could no longer continue. Recordings were performed before (pre-fatigue) and after the completion of the fatigue exercises (immediately: post-fatigue, after a 2.5 min recovery, after a 5 min recovery and after a 7.5 min recovery). Results: The joint reposition test of the MP joint in the post-fatigue condition showed higher reposition errors than the prefatigue condition (p<0.05). Additionally, there was a significant difference in recovery of joint reposition errors after fatiguing exercises of the hand muscle, among groups (p<0.05). Conclusion: The fatigue of the hand muscles affected joint position sense by an alteration of somatosensory and proprioceptive information. Nonetheless, the effect of hand muscle fatigue was short-lived, since joint reposition errors decreased to post-fatigue values after 7.5 min of recovery.

Relationship between position error and the inner configuration of GPS receivers (GPS 수신기의 내부설정과 위치오차의 관계)

  • Ahn, Jang-Young;Kim, Heung-Soo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.3
    • /
    • pp.213-221
    • /
    • 2005
  • In order to get more accurate GPS position with the changes of the inner configuration setting of GPS receiver, the authors carried out measurements of the position at known it with one antenna and two GPS receivers manufactured by same company. We have investigated the accuracies of positions according to the change of the maskangle and receiving mode of output data in inner configuration of GPS receivers, and analyzed the relationships between numbers of satellites visibility and maskangles, and values of HDOP and maskangles. When the maskangles in inner configuration were set below 20 degree, the accuracies of positions were high. But if they were became bigger than 25 degree, standard deviations ot position errors and HDOPS of positions were became bigger. Numbers of satellites visibility(y) and maskangles(x) have relations with a formula, y = -0.1662x+9.9225, and values of HDOP(y) and maskangles(x) have relations with a formula, y = 0.6035 $e^{0.0517x}$. The results of position accuracies observed by two GPS receivers to the known position at same time were that average errors of position fixs by GPS receiver configured with NMEA0183 mode were 6.7m and standard deviations were 1.5m, and them by GPS receiver configured with binary mode were 5.0m and standard deviations were 1.1m respectively.

Positioning errors and quality assessment in panoramic radiography

  • Dhillon, Manu;Raju, Srinivasa M.;Verma, Sankalp;Tomar, Divya;Mohan, Raviprakash S.;Lakhanpal, Manisha;Krishnamoorthy, Bhuvana
    • Imaging Science in Dentistry
    • /
    • v.42 no.4
    • /
    • pp.207-212
    • /
    • 2012
  • Purpose: This study was performed to determine the relative frequency of positioning errors, to identify those errors directly responsible for diagnostically inadequate images, and to assess the quality of panoramic radiographs in a sample of records collected from a dental college. Materials and Methods: This study consisted of 1,782 panoramic radiographs obtained from the Department of Oral and Maxillofacial Radiology. The positioning errors of the radiographs were assessed and categorized into nine groups: the chin tipped high, chin tipped low, a slumped position, the patient positioned forward, the patient positioned backward, failure to position the tongue against the palate, patient movement during exposure, the head tilted, and the head turned to one side. The quality of the radiographs was further judged as being 'excellent', 'diagnostically acceptable', or 'unacceptable'. Results: Out of 1,782 radiographs, 196 (11%) were error free and 1,586 (89%) were present with positioning errors. The most common error observed was the failure to position the tongue against the palate (55.7%) and the least commonly experienced error was patient movement during exposure (1.6%). Only 11% of the radiographs were excellent, 64.1% were diagnostically acceptable, and 24.9% were unacceptable. Conclusion: The positioning errors found on panoramic radiographs were relatively common in our study. The quality of panoramic radiographs could be improved by careful attention to patient positioning.