• 제목/요약/키워드: Position Error Compensation Algorithm

검색결과 84건 처리시간 0.026초

Compensation of Position Error due to Amplitude Imbalance in Resolver Signals

  • Hwang, Seon-Hwan;Kwon, Young-Hwa;Kim, Jang-Mok;Oh, Jin-Seok
    • Journal of Power Electronics
    • /
    • 제9권5호
    • /
    • pp.748-756
    • /
    • 2009
  • This paper presents a compensation algorithm for position error due to an amplitude imbalance between resolver output signals. Resolvers are typically used to obtain absolute position information for motor drive systems in severe environments. Position error is caused by an amplitude imbalance of the resolver output signals. As a result, the d- and q-axis currents of synchronous reference frame have periodic ripples in the stator fundamental frequency in permanent magnet synchronous motor (PMSM) drive systems. Therefore, this paper proposes a compensation algorithm to reduce the position error generated by the amplitude imbalance. The proposed method does not require any additional hardware, and reduces computation time with a simple integral operation according to rotor position. In addition, the position error can be directly compensated for by the estimated position error. The effectiveness of the proposed compensation algorithm is verified through several simulations and experiments.

2차원 PSD 를 이용한 이동로보트의 위치 보정에 관한 연구 (A Study on the Position Compensation of a Mobile Robot Using 2D Position Sensitive Detector)

  • 노영식;이기현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.833-836
    • /
    • 1995
  • The Position Sensitive Detector(PSD) is an useful which can be used to measurement the position of an incidence light in detail and in real-time. In this paper, light sources, to be predefinded positions, are used as landmarks and the 2-D PSD signals are used to compensate the position of a running mobile robot. To induce the position compensation algorithm, first, we inspect the error factor, make the error model, and evaluate the error covariance matrix between the real position and estimated position in dead reckoning system. Next we obtain an optimal position compensation algorithm to update the estimated position using extended Kalman filler by the relation of the external light position and it's PSD signal. Through the simulation of navigating a robot the effectiveness of the proposed method is confirmed.

  • PDF

INS/GPS Integrated Smoothing Algorithm for Synthetic Aperture Radar Motion Compensation Using an Extended Kalman Filter with a Position Damping Loop

  • Song, Jin Woo;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.118-128
    • /
    • 2017
  • In this study, we propose a real time inertial navigation system/global positioning system (INS/GPS) integrated smoothing algorithm based on an extended Kalman filter (EKF) and a position damping loop (PDL) for synthetic aperture radar (SAR). Integrated navigation algorithms usually induce discontinuities due to error correction update by the Kalman filter, which are as detrimental to the performance of SAR as the relative position error. The proposed smoothing algorithm suppresses these discontinuities and also reduces the relative position error in real time. An EKF estimates the navigation errors and sensor biases, and all the errors except for the position error are corrected directly and instantly. A PDL activated during SAR operation period imposes damping effects on the position error estimates, where the estimated position error is corrected smoothly and gradually, which contributes to the real time smoothing and small relative position errors. The residual errors are re-estimated by the EKF to maintain the estimation performance and the stability of the overall loop. The performance improvements were confirmed by Monte Carlo simulations. The simulation results showed that the discontinuities were reduced by 99.8% and the relative position error by 48% compared with a conventional EKF without a smoothing loop, thereby satisfying the basic performance requirements for SAR operation. The proposed algorithm may be applicable to low cost SAR systems which use a conventional INS/GPS without changing their hardware configurations.

5축 CNC 공작기계의 오차합성모델링 및 보정 알고리즘 (Error Synthesis Modeling and Compensation Algorithm of a 5-Axis CNC Machine Tool)

  • 양승한;이철수
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.122-129
    • /
    • 1999
  • A 5-axis CNC machine tool is more useful compared with a 3-axis machine tool, because the position and the orientation of a tool tip can be controlled simultaneously. Unlike the 3-axis machine tool, the 5-axis machine tool has the volumetric position error and volumetric orientation error due to the quasi-static error of each machine tool joint which is a major source of machined part error. So, the generalized error synthesis model of the 5-axis CNC machine tool was developed to predict and to compensate for the volumetric position error and the volumetric orientation error. It was proposed that a compensation algorithm to correct simultaneously the volumetric position error and the volumetric orientation error of the 5-axis CNC machine by error inverse kinematic.

  • PDF

경로 추적을 위한 구륜 이동 로봇의 인공 면역 알고리즘을 이용한 퍼지 제어기 (A Fuzzy Controller Using Artificial Immune Algorithm for Trajectory Tracking of WMR)

  • 김상원;박종국
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.561-567
    • /
    • 2006
  • This paper deals with a fuzzy controller using IA(Immune Algorithm) for Trajectory Tracking of 2-DOF WMR(Wheeled Mobile Robot). The global inputs to the WMR are reference position and reference velocity, which are time variables. The global output of WMR is a current position. The tracking controller makes position error to be converged 0. In order to reduce position error, a compensation velocities on the track of trajectory is necessary. Therefore, a FIAC(Fuzzy-IA controller) is proposed to give velocity compensation in this system. Input variables of fuzzy part are position errors in every sampling time. The output values of fuzzy part are compensation velocities. IA are implemented to adjust the scaling factor of fuzzy part. The computer simulation is performed to get the result of trajectory tracking and to prove efficiency of proposed controller.

기준물을 이용한 공작기계 위치오차 보정기술에 관한 연구 (A Study on the Error Compensation of Machine Tool Position Using Reference Artifact and On-Machine Probe)

  • 조남규;박재준;정성종
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1317-1324
    • /
    • 2001
  • In this paper, a methodology of geometrical error identification and compensation for NC machine tool position is developed. We propose a reference artifact with measuring the geometry of coordinate system for compensating linear scale error of NC machine. The coordinate system of the NC machine could be compensated successfully with the information obtained by measuring the reference artifact and our compensation algorithm. Monte Carlo simulation is used to evaluate coordinate referencing ability and, the uncertainties of the machine tool position is estimated and observed through the compensation process by simulation.

Study on the compensation algorithm for inertial navigation system

  • Kim Hwan-Seong;NGUYEN DuyAnh
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2005년도 추계학술대회 논문집
    • /
    • pp.47-52
    • /
    • 2005
  • This paper describes how a relatively compensate the error of position by using low cost Inertial Measurement Unit (IMU) has been evaluated and compared with the well established method based on a Kalman Filter(KF). The compensation algorithm by using IMU have been applied to the problem of integrating information from an Inertial Navigation System (INS). The KF is to estimate and compensate the errors of an INS by using the integrated INS velocity and position. We verify the proposed algorithm by simulation results.

  • PDF

기준물을 이용한 공작기계 위치오차 보정기술에 관한 연구 (A Study on the Error Compensation of Machine Tool Position Using Reference Artifact and On-machine probe)

  • 조남규;박재준;정성종
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.20-25
    • /
    • 2000
  • In this paper, a methodology of geometrical error identification and compensation for NC machine tool position. We have proposed a reference artifact with which, in measuring the coordinate system of NC machine, the robust coordinate systems are given. The coordinate system of the NC machine could be compensated successfully with the information obtained by measuring the reference artifact and our compensation algorithm. Monte Carlo simulation is used to evaluate coordinate referencing ability and, the uncertainties of the machine tool position is estimated and observed through the compensation process by simulation.

  • PDF

초정밀스테이지의 위치결정정도 향상에 관한 연구 (A Study on the Improvement of Positioning accuracy of ultra-precision stage)

  • 황주호;송창규;박천홍;이찬홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.465-468
    • /
    • 2001
  • An aerostatic stage has frictionless behavior, so it has a advantage of investigation into positioning characteristics. A one-dimensional aerostatic ceramic stage with ballscrew driven and laser scale feedback system is manufactured, aiming at investigating positioning characteristic of ultra-precision stage. We confirm, this ceramic aerostatic stage has a 10nm micro resolution, and can be reduced mean of position error by compensation of numeric control command. By means of analyzing relationship of position error and change of temperature, we build a on-line compensation algorithm of position error from the measured temperature data. So we can improve repeatability of ultra-precision stage up to 34%($0.095{\mu}$) of the normal condition.

  • PDF

Periodic Bias Compensation Algorithm for Inertial Navigation System

  • Kim Hwan-Seong;Nguyen Duy Anh;Kim Heon-Hui
    • 한국항해항만학회지
    • /
    • 제28권9호
    • /
    • pp.803-808
    • /
    • 2004
  • In this paper, an INS compensation algorithm is proposed using the accelerometer from IMU. First, we denote the basic INS algorithm and show that how to compensate the position error when low cost IMU is used. Second, considering the ship's characteristic and ocean environments, we consider with a drift as a periodic external environment change which is affected with exact position. To develop the compensation algorithm, we use a repetitive method to reduce the external environment changes. Lastly, we verify the proposed algorithm through the experiments, where the acceleration sensor is used to acquire real data.