• Title/Summary/Keyword: Position Dilution of Precision

Search Result 42, Processing Time 0.02 seconds

Assessment on the Performance of Search And Rescue Service of KPS

  • Lee, Jung-Hoon;Lee, Sanguk;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.3
    • /
    • pp.119-127
    • /
    • 2019
  • COsmicheskaya Sisteyama Poiska Avariynich Sudov Search and Rescue Satellite-Aided Tracking (COSPAS-SARSAT) is an international communication support program to perform search and rescue (SAR) operations in emergency situations by using satellite signals relayed from a beacon. The legacy COSPAS-SARSAT was originally composed of low altitude and geostationary Earth orbit satellites; thus, a limited number of directional dish antennas was sufficient to cover the limited number of visible satellites at the local user terminal. However, the second generation COSPAS-SARSAT newly added the medium Earth orbit satellites, e.g., Global Navigation Satellite Systems (GNSS) to the existing system, so that the number of visible satellites increase dramatically, and the system upgrade to cover all the visible satellites is foreseen. The additional use of planned Korea Positioning System (KPS) to existing GNSS is envisaged to provide a better performance of their SAR service. This paper presents the benefits of the additional use of KPS together with the phased array antennas at the local user terminal of the COSPAS-SARSAT. This is to effectively response to the increase of the number of visible satellites. Numerical simulation is included to evaluate the performance improvement of COSPAS-SARSAT in terms of the number of visible satellites, geometry between satellites and user, and position estimation accuracy.

A Design of Navigation System Using Stratospheric Airships in South Korea

  • Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jae;Hur, Jung;Kang, Tae-Sam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.56-69
    • /
    • 2006
  • For a relatively small country like Korea, a radionavigation system using airships can be considered, which is to provide the navigation service utilizing the stratospheric airships that are deployed in the stratosphere at the altitude of around 20-23km, and which is an independent or a back-up radionavigation system other than current GPS or GLONASS. In this paper, a feasibility study on the constellation of stratospheric airships for the navigation system has been performed. A measure of a geometrical condition between a receiver and navigation transmitters. called the DOP (Dilution of Precision), determines the resulting positioning error of the navigation system, if the error of range measurement is predictable. Therefore, with assumption that the range measurement error of the stratospheric airship navigation system is quite similar to GPS. the several DOP values have been used to evaluate the performance of the navigation system with comparing with the DOP values of GPS as the reference values. To provide the position information of the navigation transmitters to users, a receiver cluster system fixed on the ground, called an IGPS (inverted GPS), is proposed, and the error is also evaluated using the DOP values. Five areas around five major cities in South Korea have been selected, and then by numerical simulations the DOP values are compared those of GPS to assess the performance of the proposed navigation system using stratospheric airships. The possible frequency bands have been proposed. and then link budget of the navigation transmitter has been analyzed for the proposed navigation system.

An Error Analysis of GPS Positioning (GPS를 이용한 위치 결정에서의 오차 해석)

  • Park, Chansik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.550-557
    • /
    • 2001
  • There are several applications and error analysis methods using GPS(Global Positioning System) In most analysis positioning and timing errors are represented as the multiplication of DOP(Dilution Of Precision) and measurement errors, which are affected by the receiver and measurement type. Therefore, lots of DOPs are defined and used to analyze and predict the performance of positioning and timing systems. In this paper, the relationships between these DOPs are investigated in detail, The relationships between GDOP(Geometric DOP), PDOP(Position DOP) and TDOP(Time DOP) in the absolute positioning are de-rived. Using these relationships, the affect of clock bias is analyzed. The relationships between RGDOP(Relative DOP) and PDOP are also derived in relative positioning where the single difference and double dif-ference techniques are used. From the results, it is expected that using the common clock will give better performance when the single difference technique is used while the effects of clock is eliminate when the double difference technique is used. Finally, the error analyses of dual frequency receivers show that the narrow lane measurements give more accurate results than wide line of or L1. L2 independent measurements.

  • PDF

Analysis on GPS PDOP Peaks in Signal-Blockage Simulations

  • Kim, Yeong-Guk;Park, Kwan-Dong;Kim, Mi-So;Yoo, Chang Seok;Bae, Joon Sung;Kim, Jun O
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.79-88
    • /
    • 2020
  • We determined Global Positioning System (GPS) satellite visibilities in signal-blockage simulations and then analyzed Position Dilution of Precision (PDOP) fluctuations obtained from those simulated satellite geometries. PDOP values under harsh signal-blockage simulation conditions become very high compared to those calculated with real observations. Especially when the number of observed satellites is four, which is the minimum requirement for GPS positioning, PDOP values instantaneously reached several hundreds or even several tens of thousands. It was also found that the volume of the tetrahedron composed with four satellites decreases significantly. When the correlation of the tetrahedron volume and PDOP was analyzed, we reached the following conclusions: PDOP values less than 4 can be acquired when the volume is larger than 103.2 × 1019 ㎥, and PDOP values increase beyond 50 when the volume is less than 6.0 × 1019 ㎥.

Hybrid TDOA/AOA Localization Algorithm for GPS Jammers (GPS 전파교란원 위치 추정을 위한 TDOA/AOA 복합 기법 설계)

  • Lim, Deok Won;Kang, Jae Min;Heo, Moon Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.101-105
    • /
    • 2014
  • For a localization system, the TDOA (Time Difference of Arrival) measurement and AOA (Angle of Arrival) measurement are often used for estimating target's positions. Although it is known that the accuracy of TDOA based localization is superior to that of AOA based one, it may have a poor vertical accuracy in bad geometrical conditions. This paper, therefore, proposes a localization algorithm in which the vertical position is estimated by AOA measurements and the horizontal one is estimated by TDOA measurement in order to achieve high 3D-location accuracy. And this algorithm is applied to a GPS jammer localization systems because it has a large value of the DOP (Dilution of Precision) when the jammer is located far away from the system. Simulation results demonstrate that the proposed hybrid TDOA/AOA location algorithm gives much higher location accuracy than TDOA or AOA only location.

Analysis of Navigation Parameter and Performance Regarding the Russian GLONASS (러시아의 GLONASS 항법 파라미터 및 성능 분석)

  • Choi, Chang-Mook
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • The Russian Global Navigation Satellite System (GLONASS) has been fully recovered since October 2011, and it has been significantly modernized. The recently launched GLONASS 752 was set for successful performance on October 16, 2017 and has resulted in 24-satellite constellation with 22 second-generation (GLONASS-M) satellites, and a third-generation (GLONASS-K) satellite. Therefore, this paper is focused on not only the identified navigation parameters, but also the performance analysis of the project based on its real data received from the studied satellites. It is verified that the 5-11 satellites are available for receiving navigation signal at this time. The obtained values of GDOP, PDOP, HDOP, VDOP, and TDOP are 2.790, 2.424, 1.169, 2.123, and 1.381, noted respectively in standard deviation. In fact, the level of positioning precision is about 1.4m in standard deviation. As a result, the positioning performances of the measured GLONASS and GPS are virtually identical. Therefore, we determine that the GLONASS is expected to be expanded for future applications.

Study on GNSS Constellation Combination to Improve the Current and Future Multi-GNSS Navigation Performance

  • Seok, Hyojeong;Yoon, Donghwan;Lim, Cheol Soon;Park, Byungwoon;Seo, Seung-Woo;Park, Jun-Pyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.43-55
    • /
    • 2015
  • In the case of satellite navigation positioning, the shielding of satellite signals is determined by the environment of the region at which a user is located, and the navigation performance is determined accordingly. The accuracy of user position determination varies depending on the dilution of precision (DOP) which is a measuring index for the geometric characteristics of visible satellites; and if the minimum visible satellites are not secured, position determination is impossible. Currently, the GLObal NAvigation Satellite system (GLONASS) of Russia is used to supplement the navigation performance of the Global Positioning System (GPS) in regions where GPS cannot be used. In addition, the European Satellite Navigation System (Galileo) of the European Union, the Chinese Satellite Navigation System (BeiDou) of China, the Quasi-Zenith Satellite System (QZSS) of Japan, and the Indian Regional Navigation Satellite System (IRNSS) of India are aimed to achieve the full operational capability (FOC) operation of the navigation system. Thus, the number of satellites available for navigation would rapidly increase, particularly in the Asian region; and when integrated navigation is performed, the improvement of navigation performance is expected to be much larger than that in other regions. To secure a stable and prompt position solution, GPS-GLONASS integrated navigation is generally performed at present. However, as available satellite navigation systems have been diversified, finding the minimum satellite constellation combination to obtain the best navigation performance has recently become an issue. For this purpose, it is necessary to examine and predict the navigation performance that could be obtained by the addition of the third satellite navigation system in addition to GPS-GLONASS. In this study, the current status of the integrated navigation performance for various satellite constellation combinations was analyzed based on 2014, and the navigation performance in 2020 was predicted based on the FOC plan of the satellite navigation system for each country. For this prediction, the orbital elements and nominal almanac data of satellite navigation systems that can be observed in the Korean Peninsula were organized, and the minimum elevation angle expecting signal shielding was established based on Matlab and the performance was predicted in terms of DOP. In the case of integrated navigation, a time offset determination algorithm needs to be considered in order to estimate the clock error between navigation systems, and it was analyzed using two kinds of methods: a satellite navigation message based estimation method and a receiver based method where a user directly performs estimation. This simulation is expected to be used as an index for the establishment of the minimum satellite constellation for obtaining the best navigation performance.

Analysis for Influence and Geometry of GPS/Galileo System (GPS/Galileo 시스템의 기하구조 및 영향 분석)

  • Lee Jae-One
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.763-770
    • /
    • 2005
  • Global Navigation Satellite System (GNSS) has become an indispensable tool for providing precise position, velocity and time information for many applications like traditional surveying and navigation etc. However, Global Positioning System (GPS), which was developed and is maintained and operated by the U.S. Department of Defence (DoD), has monopolized the world industry and market, and hence there exists the situation that most of GNSS users absolutely depend upon the GPS. In order to overcome the monopoly, some countries, such as Russia, Japan and European Union (EU), have developed their own GNSSs, so-called GLONASS, JRANS and Galileo systems. Among them, the most prospective system in near future is EU's Galileo system scheduled to launch in 2008. This research has focused on the next generation GNSS system based on GPS and Gralileo system with developing a GNSS simulation software, named as GIMS2005, which generates and analyzes satellite constellation and measurements. Based on the software, a variety of simulation tests have been carried out to recognize limits of GPS-only system and potential benefits of integrated GPS/Galileo positioning. Geometry simulation results have showed that comparing with GPS-only case, the number qf visual satellites, Dilution of Precision (DOP) values, internal reliabilities and external reliabilities.

Retrieval and Validation of Precipitable Water Vapor using GPS Datasets of Mobile Observation Vehicle on the Eastern Coast of Korea

  • Kim, Yoo-Jun;Kim, Seon-Jeong;Kim, Geon-Tae;Choi, Byoung-Choel;Shim, Jae-Kwan;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.4
    • /
    • pp.365-382
    • /
    • 2016
  • The results from the Global Positioning System (GPS) measurements of the Mobile Observation Vehicle (MOVE) on the eastern coast of Korea have been compared with REFerence (REF) values from the fixed GPS sites to assess the performance of Precipitable Water Vapor (PWV) retrievals in a kinematic environment. MOVE-PWV retrievals had comparatively similar trends and fairly good agreements with REF-PWV with a Root-Mean-Square Error (RMSE) of 7.4 mm and $R^2$ of 0.61, indicating statistical significance with a p-value of 0.01. PWV retrievals from the June cases showed better agreement than those of the other month cases, with a mean bias of 2.1 mm and RMSE of 3.8 mm. We further investigated the relationships of the determinant factors of GPS signals with the PWV retrievals for detailed error analysis. As a result, both MultiPath (MP) errors of L1 and L2 pseudo-range had the best indices for the June cases, 0.75-0.99 m. We also found that both Position Dilution Of Precision (PDOP) and Signal to Noise Ratio (SNR) values in the June cases were better than those in other cases. That is, the analytical results of the key factors such as MP errors, PDOP, and SNR that can affect GPS signals should be considered for obtaining more stable performance. The data of MOVE can be used to provide water vapor information with high spatial and temporal resolutions in the case of dramatic changes of severe weather such as those frequently occurring in the Korean Peninsula.

A Study on the Variation of the GDOP and Service Area in Accordance with Arrangement of Transmitting Station Loran C System (로오란 C 시스템에서 발신국의 배치에 따른 GDOP의 변화 및 유효범위에 관한 연구)

  • An, Jang-Yeong;Hiroshi Suzuki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.4
    • /
    • pp.365-371
    • /
    • 1990
  • In this paper, the authors calculate GDOP(Geometric Dilution of Precision) with the mast and slave transmitting stations at the past and present and simulation positions in the 9970 chain and 5970 chain of the loran C system, and analyzed variations of the GDOP and effective ranges in accordance with the shifting of transmitting stations. The results obtained are as follows; 1) The line 3.0 of equi-GDOP map that the Z slave station of 9970 chain is Guam island is falled on with line 2.0 of it's map that it is Yap island approximately, and units of GDOP of calculating with Guam island are increased then them with Yap island on the south parts of mast station. 2) If the control right of Z slave station of 9970 chain could be not transfered to japan and be closed on account of the territorial problems, the units of GDOP to calculate without it's station at any positions are very increased and the accuracy is down on the south parts of mast station. The line 5.0 of it's map is falled on with line 2.0 in case of Yap island, its Z station, and line 3.0 in case of Guam island with Z slave station approximately. 3) The X slave station of 9970 chain and 5970 chain are required rearrangement for the purpose of accurating position fix and expending service area in view of propagation route of wave and arrangement of transmitting station.

  • PDF