• Title/Summary/Keyword: Position Controller

Search Result 1,819, Processing Time 0.028 seconds

Disturbance Rejection and Attitude Control of the Unmanned Firing System of the Mobile Vehicle (이동형 차량용 무인사격시스템의 외란 제거 및 자세 제어)

  • Chang, Yu-Shin;Keh, Joong-Eup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.64-69
    • /
    • 2007
  • Motion control of the system is a position control of motor. Motion control of an uncertain robot system is considered as one of the most important and fundamental research directions in the robotics. Some distinguished works using linear control, adaptive control, robust control strategies based on computed torque methodology have been reported. However, it is generally recognized within the control community that these strategies suffer from the following problems : the exact robot dynamics are needed and hard to implement, the adaptive control cannot guarantee the performance during the transient period for adaptation under the variation, the robust control algorithms such as the sliding mode control need information on the bounds of the possible uncertainty and disturbance. And it produces a large control input as well. In this dissertation, a motion control for the unmanned intelligent robot system using disturbance observer is studied. This system is affected with an impact vibration disturbance. This paper describes a stable motion control of the system with the consideration of external disturbance. To obtain the stable motion independently against the external disturbance, the disturbance rejection is strongly required. To address the above issue, this paper presents a Disturbance OBserver(DOB) control algorithm. The validity of the suggested DOB robust control scheme is confirmed by several computer simulation results. And the experiments with a motor system is performed to give the validity of applicability in the industrial field. This results make the easier implementation of the controller possible in the field.

Synchronization performance optimization using adaptive bandwidth filter and average power controller over DTV system (DTV시스템에서 평균 파워 조절기와 추정 옵셋 변화율에 따른 대역폭 조절 필터를 이용한 동기 성능 최적화)

  • Nam, Wan-Ju;Lee, Sung-Jun;Sohn, Sung-Hwan;Kim, Jae-Moung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.45-53
    • /
    • 2007
  • To recover transmitted signal perfectly at DTV receiver, we have to acquire carrier frequency synchronization to compensate pilot signal which located in wrong position and rotated phase. Also, we need a symbol timing synchronization to compensate sampling timing error. Conventionally, to synchronize symbol timing, we use Gardner's scheme which used in multi-level signal. Gardner's scheme is well known for its sampling the timing error signal from every symbol and it makes easy to detect and keep timing sync in multi-path channel. In this paper, to discuss the problem when the received power level is out of range and we cannot get synchronization information. With this problem, we use 2 step procedures. First, we put a received signal power compensation block before Garder's timing error detector. Second, adaptive loop filter to get a fast synchronization information and averaging loop filter's output value to reduce the amount of jitter after synchronization in PLL(Phased Locked Loop) circuit which is used to get a carrier frequency synchronization and symbol timing synchronization. Using the averaging value, we can estimate offset. Based on offset changing ratio, we can adapt adaptive loop filter to carrier frequency and symbol timing synchronization circuit.

Visual Feedback System for Manipulating Objects Using Hand Motions in Virtual Reality Environment (가상 환경에서의 손동작을 사용한 물체 조작에 대한 시각적 피드백 시스템)

  • Seo, Woong;Kwon, Sangmo;Ihm, Insung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.9-19
    • /
    • 2020
  • With the recent development of various kinds of virtual reality devices, there has been an active research effort to increase the sense of reality by recognizing the physical behavior of users rather than by classical user input methods. Among such devices, the Leap Motion controller recognizes the user's hand gestures and can realistically trace the user's hand in a virtual reality environment. However, manipulating an object in virtual reality using a recognized user's hand often causes the hand to pass through the object, which should not occur in the real world. This study presents a way to build a visual feedback system for enhancing the user's sense of interaction between hands and objects in virtual reality. In virtual reality, the user's hands are examined precisely by using a ray tracing method to see if the virtual object collides with the user's hand, and when any collision occurs, visual feedback is given through the process of reconstructing the user's hand by moving the position of the end of the user's fingers that enter the object through sign distance field and reverse mechanics. This enables realistic interaction in virtual reality in real time.

Sliding Mode Control with Super-Twisting Algorithm for Surge Oscillation of Mooring Vessel System (슈퍼트위스팅 슬라이딩모드를 이용한 선박계류시스템의 동적제어)

  • Lee, Sang-Do;Lee, Bo-Kyeong;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.953-959
    • /
    • 2018
  • This paper deals with controlling surge oscillations of a mooring vessel system under large external disturbances such as wind, waves and currents. A control synthesis based on Sliding Mode Control (SMC) with a Super-Twisting Algorithm (STA) has been applied to suppress nonlinear surge oscillations of a two-point mooring system. Despite the advantages of robustness against parameter uncertainties and disturbances for SMC, chattering is the main drawback for implementing sliding mode controllers. First-order SMC shows convergence within the desired level of accuracy, in which chattering is the main obstacle related to the destructive phenomenon. Alternatively, STA completely eliminates chattering phenomenon with high accuracy even for large disturbances. SMC based on STA is an effective tool for the motion control of a nonlinear mooring system because it avoids the chattering problems of a first-order sliding mode controller. In addition, the error trajectories of controlled mooring systems implemented by means of STA form in the bounded region. Finally, the control gain effect of STA can be observed in sliding surface and position trajectory errors.

Performance Analysis of 3D Color Picker in Virtual Reality (가상현실 3차원 색상 선택기의 성능 분석)

  • Kim, Jieun;Lee, Jieun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.2
    • /
    • pp.1-11
    • /
    • 2021
  • In a virtual environment, a 3D workspace and 3D interaction are possible, but most virtual reality applications use a 2D color picker. This paper implements a 3D color picker based on 3D color space in a virtual environment, and compares color selection performance with the existing 2D color picker. The 3D color picker is intuitive by using the 3D color space as it is, and it can position the 3D pointer at a specific point in the color space using a controller, which is a virtual reality device, so a user can select a color in one step. On the other hand, the 2D color picker has the advantage of being familiar with existing users who work with colors in a computer environment, but has a disadvantage that requires several steps of user interaction since it has to set color properties through 2D interfaces. Based on user experiments, we confirmed the usefulness of a 3D color picker in addition to a 2D color picker in a virtual environment, and it was possible to perform natural 3D work in a virtual environment using the 3D color picker.

Active Fault Tolerant Control of Quadrotor Based on Multiple Sliding Surface Control Method (다중 슬라이딩 표면 제어 기법에 기반한 쿼드로터의 능동 결함 허용 제어)

  • Hwang, Nam-Eung;Kim, Byung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.59-70
    • /
    • 2022
  • In this paper, we proposed an active fault tolerant control (AFTC) method for the position control of a quadrotor with complete loss of effectiveness of one motor. We obtained the dynamics of a quadrotor using Lagrangian equation without small angle assumption. For detecting the fault on a motor, we designed a fault detection module, which consists of the fault detection and diagnosis (FDD) module and the fault detection and isolation (FDI) module. For the FDD module, we designed a nonlinear observer that observes the states of a quadrotor based on the obtained dynamics. Using the observed states of a quadrotor, we designed residual signals and set the appropriate threshold values of residual signals to detect the fault. Also, we designed an FDI module to identify the fault location using the designed additional conditions. To make a quadrotor track the desired path after detecting the fault of a motor, we designed a fault tolerant controller based on the multiple sliding surface control (MSSC) technique. Finally, through simulations, we verified the effectiveness of the proposed AFTC method for a quadrotor with complete loss of effectiveness of one motor.

A LiDAR-based Visual Sensor System for Automatic Mooring of a Ship (선박 자동계류를 위한 LiDAR기반 시각센서 시스템 개발)

  • Kim, Jin-Man;Nam, Taek-Kun;Kim, Heon-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1036-1043
    • /
    • 2022
  • This paper discusses about the development of a visual sensor that can be installed in an automatic mooring device to detect the berthing condition of a vessel. Despite controlling the ship's speed and confirming its location to prevent accidents while berthing a vessel, ship collision occurs at the pier every year, causing great economic and environmental damage. Therefore, it is important to develop a visual system that can quickly obtain the information on the speed and location of the vessel to ensure safety of the berthing vessel. In this study, a visual sensor was developed to observe a ship through an image while berthing, and to properly check the ship's status according to the surrounding environment. To obtain the adequacy of the visual sensor to be developed, the sensor characteristics were analyzed in terms of information provided from the existing sensors, that is, detection range, real-timeness, accuracy, and precision. Based on these analysis data, we developed a 3D visual module that can acquire information on objects in real time by conducting conceptual designs of LiDAR (Light Detection And Ranging) type 3D visual system, driving mechanism, and position and force controller for motion tilting system. Finally, performance evaluation of the control system and scan speed test were executed, and the effectiveness of the developed system was confirmed through experiments.

Design of Low-cost Automated Ventilator Using AMBU-bag (암부백을 이용한 저가형 자동 인공호흡기 설계 및 제작)

  • Shin, Hee-Bin;Lee, Hyo-Kyeong;Oh, Ga-Young
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • This study proposes the design and implementation of a low-cost emergency ventilator which can be helpful during the COVID-19 pandemic where the supply of automatic ventilators is not smooth compared with the urgent demand worldwide. Easy implementation and lower price were made possible by using AMBU-bag and off-the-shelf embedded micro-controller board. Moreover, while 3D printing is used by companies and experts around the world to build prototype hardware, materials which are readily available from surrounding environments so that people in countries where it is difficult to access many advanced technologies could manufacture the system. The design features AMBU-bag automation, not use 3D printing, and it can contrl speed. By allowing speed control, ventilation can be performed according to the conditions of the patient being used. A complementary point in the study is that it is difficult to fix the start point of the wiper motor used first. A method for complementing this is a method for replacing the brush DC motor with a position feedback function. Secondly, the AMBU-bag may wear out in the long-term process of compressing the AMBU-bag because the arm and the fixing frame are made of wood. To complement this, the part of fixing frame and arm parts that the AMBU-bag touches need to be wrapped in a material such as silicon to minimize friction.

Development of Automatic Loading Equipment of Seedling Tray for Automatic Process of Raising Seedlings in Plant Factory (식물공장 육묘공정 자동화를 위한 육묘트레이 자동적재장치 개발)

  • Park, Sang-Min;Min, Young-Bong;Lee, Gong-In;Kim, Dong-Ouk;Kang, Dong-Hyun;Moon, Sung-Dong
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.105-113
    • /
    • 2011
  • This study was carried out to develop an automatic loading equipment that can load seedling trays on loading position of the seedling bed driving on enclosed-type rail installed for interconnecting each process of raising seedlings in plant factory. The experiment of transferring the seedling tray by monorail pusher was carried out to figure out the required transfer force and problems during push type device of transporting the plastic seedling trays, that has completed its sowing process, which are installed onto the board of different materials. From the results of this experiment, the loading equipment which can exactly load three of the seedling trays orderly on the loading position of the seedling bed was designed and made. When three sowed trays on every board are transferred by pusher with the speed is at 30 cm/s, the maximum peak transfer force with maximum overshooting at initial transient state and the maximum transfer force at stead state are were respectively 32.8 N, 29.4 N on rubber board, 29.7 N, 22.5 N on a wooden board, 26.9 N, 19.6 N on a acrylic board, and 27.6 N, 19.1 N on an iron board. Changes in the transfer force occurred its maximum at the moment when the pusher collided with the tray, after the collision gradually decreased until it became stable. When two or three trays placed it in order of widthwise are transferred, it is occurred the overlapping of the tray's external bracket. The developed automatic loading equipment with PLC controller did not make any operation error through 100 times of tests, its maximum seedling tray loading speed was 2 sec/tray and its maximum error of transferred location of the tray was 0.5 cm.