• Title/Summary/Keyword: Position Control Characteristics

Search Result 781, Processing Time 0.111 seconds

A Study on the Modeling of a Position Control System with a Pneumatic Cylinder Considering Transfer Characteristics of a Transmission Line (전달 관로의 전달특성을 고려한 공기압 실린더 구동장치의 모델링에 관한 연구)

  • Kang B.S.;Jang J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.2
    • /
    • pp.20-25
    • /
    • 2004
  • In this study, a position control characteristics of pneumatic cylinder with transmission line is analyzed. Dynamic characteristics of transmission line using compressible fluid is changed by the flowing stiles of the fluid the diameter and the length of the line. But, the effect of the change of dynamic characteristics of transmission line by the flowing states on the position control characteristics can be neglected because of the friction force of the pneumatic cylinder. So, We assume that the position control characteristics is affected by the diameter and length of the transmission line. The experimental results according to the change of parameter of the transmission line show that the relation between the parameter of the transmission line and the position control characteristics of pneumatic cylinder driving system with the transmission line.

  • PDF

Synchronous Position Control of Pneumatic Cylinder Driving Apparatus (공기압 실린더 구동 장치의 위치 동기 제어)

  • Jang, Ji-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1415-1421
    • /
    • 2004
  • In this study, a position synchronous control algorithm applied to two-axes pneumatic cylinder driving apparatus is proposed. The position synchronous control algorithm is composed of position controller and synchronous controller. The position controller is designed to minimize the effect of several nonlinear characteristics peculiar to the pneumatic cylinder driving apparatus on position control performance. The synchronous controller is designed to reduce the synchronous error. The effectiveness of the proposed control algorithm is proved by experimental results.

Position Synchronous Control of Two Axes Pneumatic Cylinder Driving Apparatus (2축 공기압 실린더 구동장치의 위치 동기 제어)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • In this study, a position synchronous control algorithm applied to two-axes pneumatic cylinder driving apparatus is proposed. The position synchronous control algorithm is composed of position controller and synchronous controller. The position controller is designed to minimize the effect of several nonlinear characteristics peculiar to the pneumatic cylinder driving apparatus on position control performance. The synchronous controller is designed to reduce the synchronous error. The effectiveness of the proposed controller is proved by simulation results.

  • PDF

Synchronous Position Control of Pneumatic Cylinder Driving Apparatus (공기압 실린더 구동 장치의 위치 동기 제어)

  • Jang, Ji-Seong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.762-767
    • /
    • 2004
  • In this study, a position synchronous control algorithm being applied to two-axes pneumatic cylinder driving apparatus is proposed. The position synchronous control algorithm is composed of position controller and synchronous controller. The position controller is designed to minimize the effect of several nonlinear characteristics of the driving apparatus. The synchronous controller is designed to reduce the synchronous error. The effectiveness of the proposed controller is proved by simulation results.

  • PDF

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

High Response and Precision Control of Electronic Throttle Controller Module without Hall Position Sensor for Detecting Rotor Position of BLDCM

  • Lee, Sang-Hun;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • This paper describes the characteristics of Electronic Throttle Controller (ETC) module in BLDC motor without the hall sensor for detecting a rotor position. The proposed ETC control system, which is mainly consisted of a BLDC motor, a throttle plate, a return spring and reduction gear, has a position sensor with an analogue voltage output on the throttle valve instead of BLDC motor for detecting the rotor position. So the additional commutation information is necessarily needed to control the ETC module. For this, the estimation method is applied. In order to improve and obtain the high resolution for the position control, it is generally needed to change the gear ratio of the module or the electrical switching method etc. In this paper, the 3-phase switching between successive commutations is adapted instead of the 2-phase switching that is conventionally used. In addition, the position control with a variable PI gain is applied to improve a dynamic response during a transient period and reduce vibration at a stop in case of matching position reference. The mentioned method can be used to estimate the commutation state and operate the high-precision position control for the ETC module and the high response characteristics. The validity of the proposed method is examined through the experimental results.

Modeling of a Pneumatic Cylinder Position Control System Considering Transfer Characteristics of a Transmission Line (관로의 전달특성을 고려한 공기압 실린더 위치제어계의 모델링)

  • Kang Bo-Sik;Song Chang-Seop;Ji Sang-Won;Jang Ji-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.631-636
    • /
    • 2006
  • In this study, a model of pneumatic cylinder position control system considering dynamic characteristics of transmission line is proposed. The transfer characteristics of transmission line are assumed to be second order transfer function because the effect of resonance characteristics of transmission line under high frequency range can be neglected by the friction force and low pass characteristics of the pneumatic cylinder driving system. Therefore, the position control system including transmission line can be modeled by using a model of pneumatic cylinder driving system and the model of transmission line. The effectiveness of the proposed model is proved by comparison of simulation results using proposed model with experimental results.

The Design, Fabrication, and Characteristic Experiment for Control Rod Position Indicator Using Reed Switch in System-Integrated Modular Advanced Reactor (리드스위치를 이용한 일체형원자로용 제어봉 위치지시기 설계 제작 및 특성해석)

  • Hur, Hyung;Kim, Jong-In;Kim, Kern-Jung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.452-461
    • /
    • 2003
  • The reliability and accuracy of the information on control rod position are very important to the reactor safety and the design of the core protection system. A survey on the RSPT(Reed Switch Position Transmitter) type control rod position indicator system and its actual implementation in the existing nuclear power plants in Korea was performed first. The control rod position indicator having the high performance for SMART was developed on the basis of RSPT technology identified through the survey. The arrangement of permanent magnet and reed switches is the most important procedure in the design of control rod position indicator. The hysteresis of reed switches is one of the important factors in a repeat accuracy of control rod position indicator as well. This paper investigates efficiency of the magnetic flux concentrator and the hysteresis using FEM and verified differences in physicals characteristics by comparing the results of FEM and those of the experiment. As a result, it is shown that the characteristics of prototype control rod position indicator have a good agreement with the results of FEM.

Modeling of a Pneumatic Cylinder Position Control system Considering Transfer Characteristics of a Transmission Line (관로의 전달 특성을 고려한 공기압 실린더 위치 제어계의 모델링)

  • Jang, Ji-Seong;Kang, Bo-Sik;Ji, Sang-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.731-736
    • /
    • 2004
  • In this study, a linearized model of pneumatic cylinder position control system including transmission line is proposed. The transmission line using compressible fluid has a nonlinear transfer characteristics because that the frequency response of it is changed by the flowing state of the fluid. But, when the pressure difference between both sides of transmission line is low, the effect of resonance characteristics of it under high frequency range can be neglected because of the friction force and low pass characteristics of the position control system. Therefore, the transmission line can be modeled by second order transfer function and the natural frequency, damping ratio and gain are changed by the diameter and length of it. The effectiveness of the proposed model is proved by comparison of simulation results using proposed model with experimental results and simulation results using conventional model.

  • PDF

Pressure Control Valve using Proportional Electro-magnetic Solenoid Actuator (비례솔레노이드 액추에이터를 이용한 압력제어밸브)

  • Ham Young-Bog;Park Pyoung-Won;Yun So-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1202-1208
    • /
    • 2006
  • This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed.