• 제목/요약/키워드: Position Compensation

검색결과 637건 처리시간 0.024초

물류 시스템 적용 유도전동기의 전압강하와 역률 보상 관계 (Voltage Drop and Power Factor Compensation Relation of Induction Motor applied to Logistics System)

  • 김종겸
    • 전기학회논문지P
    • /
    • 제67권3호
    • /
    • pp.155-159
    • /
    • 2018
  • Recently, the expansion or establishment of facilities for the logistics system is increasing. Conveyor facilities play a major role in sorting and transporting logistics. Induction motors are widely used for the operation of these conveyor systems. In the logistics system, a large number of induction motors are used. These motors have a considerable distance from the power source side and have a low power factor. The installation position for the power factor compensation of the induction motor is very important. Since the voltage drop depends on the length of the line, it is an important parameter in capacitor capacity determination for power factor compensation. The capacity of the capacitors installed to compensate the power factor of the inductive load should be designed to the extent that self-excitation does not occur. In this study, we analyze the method of compensating the proper power factor considering the voltage drop and the installation position of the induction motor in the logistics system.

공작기계 오차 모델링과 보정에 관한 연구 (On Error Modeling and Compensation of Machine Tools)

  • 송일규;최영
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.98-107
    • /
    • 1996
  • The use of composite hyperpatch model is proposed to predict a machine tool positional error over the entire work space. This is an appropriate representation of the distorted work space. This model is valid for any configuration of 3-axis machine tool. Tool position, which is given NC data or CL data, contains error vector in actual work space. In this study, off-line compensation scheme was investigated for tool position error due to inaccuracy in machine tool structure. The error vector in actual work space is corrected by the error model using Newton-Raphson method. The proposed error compensation method shows the possibility of improving machine accuracy at a low cost.

  • PDF

견실한 비선형 마찰보상 이산제어 - 응용 (Robust Digital Nonlinear Friction Compensation-Application)

  • 강민식;송원길;김창재;이상국
    • 한국정밀공학회지
    • /
    • 제14권5호
    • /
    • pp.108-117
    • /
    • 1997
  • To prove the stability and the effectiveness of the robust non-linear friction control suggested and proved analytically in the previous paper, the describing function analysis is introduced. The instability of the Southward's nonlinear friction compensation for a digital position control and the improvement of phase margin of the robust nonlinear friction compensation are verified qualitatively through the describing function analysis. Those controls are applied to a single-axis digital servo driving experimental setup which has inherent stick-slip friction and experimental results confirm the results obtained in and the effectiveness of the robust nonlinear friction compensation for a digital position control.

  • PDF

RTK Latency Estimation and Compensation Method for Vehicle Navigation System

  • Jang, Woo-Jin;Park, Chansik;Kim, Min;Lee, Seokwon;Cho, Min-Gyou
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제6권1호
    • /
    • pp.17-26
    • /
    • 2017
  • Latency occurs in RTK, where the measured position actually outputs past position when compared to the measured time. This latency has an adverse effect on the navigation accuracy. In the present study, a system that estimates the latency of RTK and compensates the position error induced by the latency was implemented. To estimate the latency, the speed obtained from an odometer and the speed calculated from the position change of RTK were used. The latency was estimated with a modified correlator where the speed from odometer is shifted by a sample until to find best fit with speed from RTK. To compensate the position error induced by the latency, the current position was calculated from the speed and heading of RTK. To evaluate the performance of the implemented method, the data obtained from an actual vehicle was applied to the implemented system. The results of the experiment showed that the latency could be estimated with an error of less than 12 ms. The minimum data acquisition time for the stable estimation of the latency was up to 55 seconds. In addition, when the position was compensated based on the estimated latency, the position error decreased by at least 53.6% compared with that before the compensation.

Neutronics modelling of control rod compensation operation in small modular fast reactor using OpenMC

  • Guo, Hui;Peng, Xingjie;Wu, Yiwei;Jin, Xin;Feng, Kuaiyuan;Gu, Hanyang
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.803-810
    • /
    • 2022
  • The small modular liquid-metal fast reactor (SMFR) is an important component of advanced nuclear systems. SMFRs exhibit relatively low breeding capability and constraint space for control rod installation. Consequently, control rods are deeply inserted at beginning and are withdrawn gradually to compensate for large burnup reactivity loss in a long lifetime. This paper is committed to investigating the impact of control rod compensation operation on core neutronics characteristics. This paper presents a whole core fine depletion model of long lifetime SMFR using OpenMC and the influence of depletion chains is verified. Three control rod position schemes to simulate the compensation process are compared. The results show that the fine simulation of the control rod compensation process impacts significantly the fuel burnup distribution and absorber consumption. A control rod equivalent position scheme proposed in this work is an optimal option in the trade-off between computation time and accuracy. The control position is crucial for accurate power distribution and void feedback coefficients in SMFRs. The results in this paper also show that the pin level power distribution is important due to the heterogeneous distribution in SMFRs. The fuel burnup distribution at the end of core life impacts the worth of control rods.

CNC 공작기계용 온라인 실시간 위치오차 보정시스템의 개발 (Development of Online Realtime Positioning Error Compensation System for CNC Machine Tools)

  • 정재일;김종원;남원우;이상조
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.45-52
    • /
    • 1999
  • The online realtime positioning error compensation system 'SKY-PACS' is developed to correct geometric errors, thermal errors and tool deflection errors induced by cutting forces on the vertical machining center. 'SKY-PACS' communicates position commands and position compensation signals with the CNC controller at 100Hz, which is CNC control frequency. So the compensation procedure can be applied during axis movement. Using 'SKY-PACS', Maximum 1 axis positioning accuracy was corrected from 5{\mu}m$ to 2{\mu}m$and the squareness error of X-Y table was corrected from 51{\mu}m$/m to below 4{\mu}m$/m. The error compensation under the cutting condition is carried out by ISO10791-7. And the measurement of test-pieces shows that the roundness is corrected rom 8{\mu}m$ to below 5{\mu}m$.

  • PDF

선루프용 BLDC 전동기 홀센서 위치 오차 보상 기법 (Position Error Compensation Method of Hall Sensors for Sunroof System using BLDC Motor)

  • 안정열
    • 전기학회논문지P
    • /
    • 제66권2호
    • /
    • pp.53-57
    • /
    • 2017
  • This papers propose a Hall-effect sensors position error compensation method in a sunroof system using a BLDC motor with a low-cost MCU. If the BLDC motor is controlled with this wrong position, the torque ripple and operating current can be increased and the average torque also decreases. Generally, sunroof system has characteristics that operate at constant load for several seconds. It is possible to find the minimum operating current value while changing the position of the Hall-effect sensor during the sunroof operation by using these characteristics. Therefore, propose a method to change the Hall-effect sensor position and find the minimum current value. The validity of the proposed algorithm is verified through experiments.

INS/GPS Integrated Smoothing Algorithm for Synthetic Aperture Radar Motion Compensation Using an Extended Kalman Filter with a Position Damping Loop

  • Song, Jin Woo;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.118-128
    • /
    • 2017
  • In this study, we propose a real time inertial navigation system/global positioning system (INS/GPS) integrated smoothing algorithm based on an extended Kalman filter (EKF) and a position damping loop (PDL) for synthetic aperture radar (SAR). Integrated navigation algorithms usually induce discontinuities due to error correction update by the Kalman filter, which are as detrimental to the performance of SAR as the relative position error. The proposed smoothing algorithm suppresses these discontinuities and also reduces the relative position error in real time. An EKF estimates the navigation errors and sensor biases, and all the errors except for the position error are corrected directly and instantly. A PDL activated during SAR operation period imposes damping effects on the position error estimates, where the estimated position error is corrected smoothly and gradually, which contributes to the real time smoothing and small relative position errors. The residual errors are re-estimated by the EKF to maintain the estimation performance and the stability of the overall loop. The performance improvements were confirmed by Monte Carlo simulations. The simulation results showed that the discontinuities were reduced by 99.8% and the relative position error by 48% compared with a conventional EKF without a smoothing loop, thereby satisfying the basic performance requirements for SAR operation. The proposed algorithm may be applicable to low cost SAR systems which use a conventional INS/GPS without changing their hardware configurations.

선형 테이블 보상법을 이용한 마그네틱-옵티컬 엔코더의 절대 위치 검출에 관한 연구 (Detection of Absolute Position for Magneto-Optical Encoder Using Linear Table Compensation)

  • 김슬기;김형준;이석;박성현;이경창
    • 한국정밀공학회지
    • /
    • 제33권12호
    • /
    • pp.1007-1013
    • /
    • 2016
  • This paper presents the development of a magneto-optical encoder for higher precision and smaller size. In general, optical encoders can have very high precision based on the position information of the slate, while their sizes tend to be larger due to the presence of complex and large components, such as an optical module. In contrast, magnetic encoders have exactly the opposite characteristics, i.e., small size and low precision. In order to achieve encoder features encompassing the advantages of both optical and magnetic encoders, i.e., high precision and small size, we designed a magneto-optical encoder and developed a method to detect absolute position, by compensating for the error of the hall sensor using the linear table compensation method. The performance of the magneto-optical encoder was evaluated through an experimental testbed.

자속 포화에 의한 PMSM 센서리스 위치 추정 오차 분석 및 보상 기법 (Analysis of Estimated Position Error by Magnetic Saturation and Compensating Method for Sensorless Control of PMSM)

  • 박병준;구본관
    • 전기학회논문지
    • /
    • 제68권3호
    • /
    • pp.430-438
    • /
    • 2019
  • For a pump or a compressor motor, a high periodic load torque variation is induced by the mechanical works, and it causes system vibration and noise. To minimize these problems, load torque compensation method, injecting periodic torque current, could be utilized. However, with the sensorless control method, which is usually utilized in the pump and compressor for low cost, the periodic torque current degrades the accuracy of the rotor position estimation owing to the inductance variation. This paper analyzes the rotor position and speed estimation error of sensorless control method with constant motor parameters under period loading. Assuming the constant speed by the accurate load torque compensation, the speed error equation is derived in frequency domain with inductance depending on the stator current. Further, it is also shown that the rotor position error could be minimized by compensating the inductance variation. The simulation and experimental results verify that the derived speed error model and the validity of the inductance compensation method.