• Title/Summary/Keyword: Position/force hybrid control

Search Result 70, Processing Time 0.024 seconds

The development of application S/W packages using force control algorithm (힘 제어 알고리즘을 이용한 응용 S/W팩키지의 개발)

  • 정재욱;고명삼;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.244-249
    • /
    • 1989
  • For the robot manipulator in performing precision tasks, it is indispensable that the robot utilize the various sensors for intelligence. In this paper, the hybrid position/force control method is implemented with a force/torque sensor, two personal computers, and a PUMA 560 manipulator. Two application S/W packages for edge following and peg-in-hole tasks are developed by the proposed force control algorithm. The related experimental results are then presented and discussed,

  • PDF

The Solving of Ambiguity Problem on the Hybrid Control for Robot Manipulator (로보트 매니퓰레이터의 하이브리드 제어시 발생하는 애매함의 극복)

  • 정상근;박종국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.10
    • /
    • pp.59-68
    • /
    • 1992
  • In this paper, we proposed coordinator description and ambiguity on the hybrid controller for position/force control of robot manipulator. When the hybrid controller is desiged based on the PID control conception, the parameter sharing problem must be considered. However, selection problem of coordinate system on n-DOF robot manipulator control is unsolved. Moreover, contact force on object and change of shape make another problems. And it is very difficult to figure out the accurate mathematical model of manipulator on account of ambiguity and nonlinearity of actuator. Therfore, we design a new hybrid controller, FPID(Fuzzy PID). For verifying the validity of the controller, we tried computer simulation of this system. As a result, we can get remarkable improvement of overdamping and overshooting. Also we can solve compicance problem effectively. Furthermore, ambiguity problem is solved by adding control knowledge based compensator. So robust controller can be acheived, too.

  • PDF

Zero Power Levitation Control of Hybrid Electro-Magnetic Levitation System by Load Observer (부하 상태관측기에 의한 하이브리드 부상 시스템의 제로 파워 부상 제어)

  • Kim, Youn-Hyun;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.6
    • /
    • pp.282-289
    • /
    • 2001
  • This paper introduces the scheme that improve the control performance of electromagnetic levitation system with zero power controller. Magnetic levitation is used widely, but the electromagnetic force has nonlinear characteristics because it is proportioned to a square of the magnetic flux density and it is in inverse proportion to a square of the airgap. So, it is complicate and difficult to control the electromagnetic force. Besides, it is more difficult to control if the equivalent gap is unknown in case of zero power control. Therefore, this paper proposed the hybrid electro-magnetic levitation control method in which the variable load is estimated by using a load observer and its system controlled at a new zero power equilibrium airgap position. Also it is confirmed that the proposed control method improve the control performance through simulation and experiment.

  • PDF

Robust Hybrid Position/Force Control With Stiffness Bound (강성 경계를 가지는 견실한 위치/힘 제어)

  • Ha, In-Chul;Han, Myung-Chul
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.517-522
    • /
    • 2000
  • When a real robot manipulator is mathematically modeled. uncertainties are not avoidable. The uncertainties are often nonlinear and time-varying. The uncertain factors collie from imperfect knowledge ok system parameters. payload change. friction. external disturbance. and etc. In this paper. we propose a class of robust hybrid controls of manipulators without knowing the exact stiffness and provide the stability analysis. Simulation results are provided to show the effectiveness of the algorithms.

  • PDF

A Position/Force Control of Robotic Manipulators with Parameter Adaptation (파라미터 적응을 이용하는 로보트 매니퓰레이터의 위치/힘 제어)

  • Yu, Dong-Young;Kim, Eung-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.408-410
    • /
    • 1992
  • An adaptive hybrid position/force controller for constrained manipulator with uncertain dynamic model parameters and environment stiffness is presented. In this paper, the compliance frame model is constructed by independent positions and forces to be controlled. The adaptive controller based on this compliance frame dynamic model is designed. Lyapunov theory is used for controller design and Stability analysis.

  • PDF

Vibration Control of Beam Containing ER Fluid Using PPF Control Scheme (PPF 제어기법을 적용한 전기점성유체가 함유된 보의 진동제어)

  • Yun Shin-Il;Chin Do-Hun;Yoon Moon-Chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.32-37
    • /
    • 2005
  • Several types of smart materials and control scheme are available to adjust the structure actively in various external disturbances. A control scheme was introduced for a specific material. But the effectiveness of the control scheme has some limitation according to the choice of the smart materials and the response of the structure. The ER(Electrorheological) fluid is adequate for a large control force, and the PZT(lead zirconate titanate) patches are suitable for small but arbitrary control force at any point of the structure. It can be used for active control of structure by changing the dynamic characteristics of the structure. But it has some difficulty in suppressing the excited vibration in broad band. To compensate this resonance of the controlled structure, a hybrid controller was constructed using PPF(Positive position feedback) control with PZT and ER fluid control.

Sensorless Control Method in IPMSM Position Sensor Fault for HEV

  • Kim, Sung-Joo;Lee, Yong-Kyun;Lee, Ju-Suk;Lee, Kwang-Woon;Kwon, Taesuk;Mok, Hyungsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1056-1061
    • /
    • 2013
  • The widely used motors in HEV(Hybrid Electric Vehicles) are IPMSM(Interior Permanent Magnet Synchronous Motor) which has no rotor heat, higher efficiency and advantageous in volume and weight comparing with other motors. For vector control of IPMSM, position information of rotor is required but Resolver is mainly used as the detecting sensor. However, the use of position sensors will reduce the system reliability of hybrid electric vehicles. In this paper, a way to control the motor by sensorless was proposed at the event of sensor failure. We also implemented IPMSM sensorless operation by the expanded EMF(Electro Motive Force) voltage way and harmonic voltage which is applying in the low speed area. And we proposed how to change with sensorless control by detecting the position sensors failure and verified it through experiments.

Suspending Force Control of 12/14 BLSRM Using Fuzzy Logic Controller (퍼지 논리 제어기를 사용한 축방향지지력 제어)

  • He, Yingjie;Zhang, Fengge;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.845-847
    • /
    • 2015
  • A suspending force control based on fuzzy logic control is proposed to apply on a novel hybrid bearingless switched reluctance motor(BLSRM) which has separated torque and suspending force pole. Due to the unique structure, the suspending force control system can be easily decoupled from torque control system. In this paper, two fuzzy controller targeted at x-axis direction and y-axis direction are adopted to maintain the shaft at center position, which is very necessary for stable operation of BLSRM. By replacing the traditional PI block with modified fuzzy logic controller, the suspending system can behave a good performance, and the proposed scheme can be verified by simulation results.

  • PDF

Design and Analysis of Hybrid Stator Bearingless SRM

  • Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.94-103
    • /
    • 2011
  • This paper presents a novel bearingless switched reluctance motor (BLSRM) with decoupled torque and suspending stator poles. BLSRM is different from conventional bearingless switched reluctance motors (SRMs) because its suspending poles are separated from the torque poles. Perpendicularly placed suspending poles are designed to produce a continuous radial force to suspend the rotor. Due to the independent suspending and torque poles, BLSRM produces a suspending force with excellent linearity according to the rotor position and independent characteristics of the torque current. The air-gap is easier to control than in conventional SRMs with their linear and independent characteristics. Furthermore, to verify the proposed structure, a mathematical model for the suspending force is derived. Finite element analysis is also employed to compare BLSRM and conventional SRMs expressions of suspending force. A prototype motoris designed and manufactured to verify the effectiveness of the proposed bearingless structure.

CONTROL PERFORMANCE IMPROVEMENT OF AN EMV SYSTEM USING A PM/EM HYBRID ACTUATOR

  • Ahn, H.J.;Chang, J.U.;Han, D.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.429-436
    • /
    • 2007
  • In this study, we improved control performance of an EMV (electromechanical valve) system using a PM/EM (permanent magnet/electromagnet) hybrid EMA (electromagnetic actuator) and showed the feasibilities of both soft landing and fast transition of the EMV system using a simple PID control. The conventional EMV systems using only EM show significant nonlinear characteristics. Therefore, it is very difficult to control the valve position and several complex control schemes are used. This paper focused on the control performance improvement using a PM/EM hybrid actuator. In particular, a PM is used as a key design parameter such as a bias current of a magnetic bearing in order to improve the linear characteristic of the actuator, although most PM/EM hybrid actuators use a PM as a power saver during valve-open and -closed states. First, a FE (finite element) analysis was performed to confirm its linear static force characteristics. Then, both a test rig and a valve control system were built in order to prove experimentally the control performance improvement of the actuator. Finally, feasibilities of both soft landing and fast transition of the system were shown experimentally through gain-scheduled PID (proportional derivative integral) control.