• Title/Summary/Keyword: Position/Velocity Control

Search Result 646, Processing Time 0.026 seconds

Preventive Congestion Management Algorithm for Ubiquitous Freeway System (유비쿼터스 교통환경을 위한 연속류 정체예방관리 알고리즘)

  • Park, Eun-Mi
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.161-168
    • /
    • 2009
  • The ubiquitous transportation system environments make it possible to collect each vehicle's position and velocity data and to perform more sophisticated traffic flow management at individual vehicle or platoon level through V2V and V2I communication. It is necessary to develop a new traffic management paradigm to take advantage of the ubiquitous transportation system environments. This paper proposed a preventive congestion management algorithm for uninterrupted flow, whose goal is to minimize the incident potential and maximize the productivity by maintaining traffic flow stability. The algorithm includes the following steps: Processing the raw data to produce the 3-dimension speed/flow/density profile and to produce the platoon profile and the shock wave profile, Determining the traffic state and the flow stability based on the processed data, Deciding the desirable speed the according the traffic flow state, and finally Providing the desirable speed information. It remains as further work to perform field experiments and calibrate the algorithm parameters.

Fuzzy Algorithms to Generate Level Controllers for Nuclear Power Plant Steam Generators (원전 증기 발생기 수위제어용 퍼지 알고리즘)

  • Moon, Byung-Soo;Park, Jae-Chang;Kim, Dong-Hwa;Kim, Byung-Koo
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.222-232
    • /
    • 1993
  • In this paper, we present two sets of fuzzy algorithms for the steam generator level control ; one for the high power operations where the flow error is available and the other for the low power operations where the flow error is not available. These are converted to a PID type controller for the high power case and to a quadratic function form of a controller for the low power case. These controllers are implemented on the Compact Nuclear Simulator at Korea Atomic Energy Research Institute and tested by a set of four simulation experiments for each. For both cases, the results show that the total variation of the level error and of the flow error are about 50% of those by the PI controllers with about one half of the control action. For the high power case, this is mainly due to the fact that a combination of two PD type controllers in the velocity algorithm form rather than a combination of two PI type controllers in the position algorithm form is used. For the low power case, the controller is essentially a PID type with a very small integral component where the average values for the derivative component input and for the controller output are used.

  • PDF

Real-Time Tracking of Moving Object by Adaptive Search in Spatial-temporal Spaces (시공간 적응탐색에 의한 실시간 이동물체 추적)

  • Kim, Gye-Young;Choi, Hyung-Ill
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.63-77
    • /
    • 1994
  • This paper describes the real-time system which, through analyzing a sequence of images, can extract motional information on a moving object and can contol servo equipment to always locate the moving object at the center of an image frame. An image is a vast amount of two-dimensional signal, so it takes a lot of time to analyze the whole quantity of a given image. Especially, the time needed to load pixels from a memory to processor increase exponentially as the size of an image increases. To solve such a problem and track a moving object in real-time, this paper addresses how to selectively search the spatial and time domain. Based on the selective search of spatial and time domain, this paper suggests various types of techniques which are essential in implementing a real-time tracking system. That is, this paper describes how to detect an entrance of a moving object in the field of view of a camera and the direction of the entrance, how to determine the time interval of adjacent images, how to determine nonstationary areas formed by a moving object and calculated velocity and position information of a moving object based on the determined areas, how to control servo equipment to locate the moving object at the center of an image frame, and how to properly adjust time interval(${\Delta}$t) to track an object taking variable speed.

  • PDF

Evaluation of the Elderly Gait Stability Using the Center of Mass and Center of Pressure Inclination Angles (전, 후방 기울기각을 이용한 노인의 보행안정성 평가)

  • Yoon, Suk-Hoon;Kim, Tae-Sam;Lee, Jae-Hun;Ryu, Ji-Seon;Kwon, Young-Hoo
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.99-106
    • /
    • 2007
  • The gait instability in the elderly has been associated with age-related deterioration in physical strength and reducing the potential for elderly falls requires regular exercise. In 2005, National Center for Injury Prevention and Control(NCIPC) reported that most elderly falls occur during activities in daily living(ADL). To better reveal biomechanic mechanisms underlying age-related degeneration in gait stability, and to enhance the assessment of falls risk, an accurate quantification of a person's balance maintenance during locomotion is needed. Instantaneous orientation of the line connecting COP and COM can characterize whole body position with respect to the supporting foot during gait and the angle between this line and the vertical line passing through the COP known as a good assessment to detect the elderly gait instability. Therefore the purpose of this study was to investigate a 6-month walking exercise effects in reducing elderly fall risk factors by using COP-COM inclination angles. Twenty-two community-dwelling elderly participated this study. The participants performed a walking exercise(3 times/week, 1 hour/visit) for 6 months. Laboratory kinematics during walking was assessed at months 0, 3 and 6. Significant increased in gait velocity was found among periods(p=.011, $1.25{\pm}.03$, $1.32{\pm}.03$, and $1.39{\pm}.04\;m/s$ in 0-, 3-, and 6-month, respectively). Also, significant differences in anterior and posteriror inclination angles were found among the periods(p<.05; posterior inclination angles: $12.8{\pm}2.2$, $11.0{\pm}2.9$, & $10.9{\pm}1.9$; anterior inclination angles: $13.7{\pm}1.7$, $14.6{\pm}3.2$, & $1.46{\pm}.21$ in 0month, 3month, & 6month, respectively). These findings provide evidence of significant reduced fall risk factors of community-living older adults associated with a systematic walking program.

Line-of-Sight (LOS) Vector Adjustment Model for Restitution of SPOT 4 Imagery (SPOT 4 영상의 기하보정을 위한 시선 벡터 조정 모델)

  • Jung, Hyung-Sup
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.247-254
    • /
    • 2010
  • In this paper, a new approach has been studied correcting the geometric distortion of SPOT 4 imagery. Two new equations were induced by the relationship between satellite and the Earth in the space. line-of-sight (LOS) vector adjustment model for SPOT 4 imagery was implemented in this study. This model is to adjust LOS vector under the assumption that the orbital information of satellite provided by receiving station is uncertain and this uncertainty makes a constant error over the image. This model is verified using SPOT 4 satellite image with high look angle and thirty five ground points, which include 10 GCPs(Ground Control Points) and 25 check points, measured by the GPS. In total thirty five points, the geometry of satellite image calculated by given satellite information(such as satellite position, velocity, attitude and look angles, etc) from SPOT 4 satellite image was distorted with a constant error. Through out the study, it was confirmed that the LOS vector adjustment model was able to be applied to SPOT4 satellite image. Using this model, RMSEs (Root Mean Square Errors) of twenty five check points taken by increasing the number of GCPs from two to ten were less than one pixel. As a result, LOS vector adjustment model could efficiently correct the geometry of SPOT4 images with only two GCPs. This method also is expected to get good results for the different satellite images that are similar to the geometry of SPOT images.

Assessment of Left Ventricular Function with Echocardiography in Patients Treated with Adriamycin : A Load-Independent Index of Myocardial Contractility and Comparisons between Rest and Exercise (Adriamycin을 사용한 환아에서 심초음파를 이용한 좌심실 기능의 평가 : 심근 수축력의 부하 비의존족 지표 및 휴식시와 운동시의 비교)

  • Park, Pyoung Soo;Park, Hye Young;Lee, Hae Yong
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.2
    • /
    • pp.214-222
    • /
    • 2002
  • Purpose : The aim of this study was to evaluate myocardial injury in children treated with adriamycin by echocardiography, which is non-invasive and safe measurement for children. Methods : Left ventricular dimensions, wall stress, and contractile function were determined by echocardiographic methods in 17 patient recepients with adriamycin chemotherapy at rest(group 1) and during stress(group 2). Twenty age-matched normal subjects were established as control group. Results : End-diastolic dimension was decreased in both groups(group 1; $92{\pm}7%$ of normal, group 2; $87{\pm}8%$ of normal, P<0.05). Left ventricular end diastolic volume and wall mass were also decreased in both groups(group 1; $96{\pm}12mL/m^2$ and $145{\pm}18g/m^2$, group 2; $87{\pm}8mL/m^2$ and $137{\pm}16g/m^2$, respectively, P<0.05 and P<0.05) and group 2 showed lower values than group 1. Meridional end systolic stress(ESSm) was increased in both groups but there was no significant difference between the two groups(group 1; $52.6{\pm}6.2g/cm^2$, group 2; $63.5{\pm}8.5g/cm^2$, P<0.05, normal value $45.7{\pm}3.5g/cm^2$). The load-independent relation of rate-corrected circumferential fiber shortening velocity(Vcfc) to ESSm has a significant abnormal change in 7 out of 17(41%) in group 1 and 12 out of 17(71%) in group 2. Conclusion : The load-dependent systolic index, such as fractional shortening, may fail to show abnormality because of the compensatory changes in preload and afterload which can mask the impaired contractility. Therefore, systolic performance also should be monitored by a load-indepedent contractility index such as slope value of the end-systolic pressure-dimension relation and the position of the left ventricular stress-fiber shortening velocity after exercise.