• Title/Summary/Keyword: Position/Force Control

Search Result 700, Processing Time 0.025 seconds

Performance Improvement of Sensorless PMSM Drives using Motor Friendly Output Filter (전동기 친화형 출력필터를 이용한 영구자석 동기전동기의 센서리스 구동 성능 향상)

  • Bu, Han-Young;Baek, Seung-Hoon;Han, Sang-Hoon;Cho, Young-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.329-332
    • /
    • 2020
  • A back-electromotive force (back-EMF) estimator for a permanent magnet synchronous motor (PMSM) uses the three-phase voltage references of a current controller to estimate rotor position. However, owing to voltage drops caused by the nonlinear characteristics of switches and passive components, the actual voltage in the motor and the three-phase voltage reference may not match. This study proposes a sensorless control method using a sine-wave output filter applied between the motor drive system and PMSM. The precise voltage in the motor can be measured with the sine-wave output filter and applied to the input of the estimator. Moreover, given that the voltage in the motor can be measured precisely at extremely low speeds, the stable operation range of the back-EMF estimator can be secured. Experimental results show that the proposed sensorless control method has stable operation at extremely low speeds compared with conventional sensorless control.

Dynamic characteristic identification of PWM solenoid valve for automatic transmission (자동변속기용 펄스폭변조 솔레노이드 밸브의 동특성 식별)

  • Jung, Gyu-Hong;Cho, Baek-Hyun;Lee, Kyo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1636-1647
    • /
    • 1997
  • As most of today's automatic transmissions in passenger car adopt a electro-hydraulic control system, the role of electronically controlled solenoid valves occupies an important position and it is essential to predict solenoid transient characteristics in order to design and evaluate the performance of the hydraulic control system. However, in general, both the magnetic and electrical parameters f the solenoid system are hardly known and it is not easy to model this section with moderate complexity although mechanical system could be developed using the classical second order system. This paper presents a dynamic modelling technique of a solenoid valve, that is controlled by pulse width modulation for an automatic transmission, in terms of system identification theory. In nonlinear computer simulation, it is shown that the identified systems which produce magnetic force to input duty cycle for various excitation signals predict the static and dynamic performance very well near the operating point and in experiment conducted to confirm the validity of identification theory for PWM solenoid valve, we find that there is a good agreement between the experimental data and simulation result. Hence, this model can be utilized in the development of pressure control system with PWM solenoid valve.

Robust Control of Biped Robot Using Sliding Mode Controller (슬라이딩 모드 제어기를 이용한 이족로봇의 강건제어)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.576-583
    • /
    • 2000
  • A robust position control using a sliding mode controller is adopted for the stable dynamic walking of the biped. For the biped robot that is modeled with 14 degrees of freedom rigid bodies using the method of the multibody dynamics, the joint angles for simulation are obtained by the velocity transformation matrix using the given Cartesian foot and trunk trajectories. Hertz force model and Hysteresis damping element which is used in explanation of the energy dissipation during contact with ground are used for modeling of the ground reactions during the simulation. By the obtained that forces which contains highly confused noise elements and the system modeling uncertainties of various kinds such as unmodeled dynamics and parameter inaccuracies, the biped system will be unstable. For that problems, we are adopting a nonlinear robust control using a sliding mode controller. Under the assumption that the esimation error on the unknown parameters is bounded by a given function, that controller provides a successful way to preserve stability and achieve good performance, despite the presence of strong modeling imprecisions or uncertainties.

  • PDF

Introduction Process of the Tobacco Graphic Health Warning Law in Korea: Analysis on the National Assembly Minutes (한국에서의 담뱃갑 경고그림 도입과정 분석연구: 국회 보건복지위 회의록 분석을 중심으로)

  • Hwang, Ji-eun;Cho, Sung-il
    • Health Policy and Management
    • /
    • v.26 no.4
    • /
    • pp.279-288
    • /
    • 2016
  • Graphic health warning on the tobacco product package is a cost-effective tobacco control policy to convey information on harmful effect of tobacco use to health, and it is known not only to motivate smokers to quit but also to deter adolescents from start smoking. In case of Korea, amendments to National Health Promotion Act requiring implementation of graphic health warning had been submitted 13 times, from 2002 to May 2015. In May 2015, the amendment had been approved by the National Assembly and it enters into force on December 23, 2016. This research analyzed the discussions from Health and Welfare Committee of the National Assembly during the implementation of the graphic health warning in order to study decision making process of legislators. Study found that there was a shift from a general opposition on implementing graphic health warning at first to a harsh conflict over relaxation of the regulation once discussing the implementation in earnest. Particularly, while the group supporting the implementation of the graphic health warning or opposing relaxation advocated the amendment with scientific and knowledge-based evidences including the World Health Organization Framework Convention on Tobacco Control, the group opposing the adoption of the amendment itself or suggesting relaxation tended to defend their position with empathy on smokers or tobacco industries.

The Pitch/Turning Control Driver Design Modeling of Permanent Magnet Synchronous Motor (영구자석형 동기전동기의 고저/선회 제어용 드라이버 설계 모델링)

  • Lee, Chun-Gi;Hwang, Jeong-Won;Lee, Joung-Tae;Yang, Bin;Lim, Dong-Keun;Park, Seung-Yub
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.219-225
    • /
    • 2014
  • The purpose of this paper is to control of the low-speed, high-precision PMSM 2-axes pitch/turning. In this paper, apply the PAM-PWM inverter for it. However, The PAM-PWM inverter, control algorithms and hardware is complex. But it is possible to improve the performance in the low-speed operation can reduce the effect of the PWM ripple and Dead Time of inverter by applying suitable DC-bus voltage control. The direct driver PMSM(Permanent Magnet Synchronous Motor) configured to vector control part, PAM control part and the other controller. The vector control part includes PI current, speed control, additional space vector modulation. PAM control part has to have PI voltage controller and P current controller for DC-bus voltage control. Besides, the motor position estimator, the speed estimator and the counter electromotive force and Dead Time Compensation are added. With this arrangement, PMSM was driven with a low pole pitch/turning by performing the current control to the current command or torque command is the paper. As a result, it was possible to minimize the disturbance component that appears in the drive in proportion to the DC voltage magnitude. The use of a hydraulic drive method for a two-axis bubble column is a typical tank. When using the PWM PAM inverter driver is in the turret can be driven by high-precision, low vibration, low noise compared to the hydraulic drive may contribute to the computerization of the turret.

A Study on the Feedforward Control Algorithm for Dynamic Positioning System Using Ship Motion Prediction (선체운동 예측을 이용한 Dynamic Positioning System의 피드포워드 제어 알고리즘에 관한 연구)

  • Song, Soon-Seok;Kim, Sang-Hyun;Kim, Hee-Su;Jeon, Ma-Ro
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.129-137
    • /
    • 2016
  • In the present study we verified performance of feed-forward control algorithm using short term prediction of ship motion information by taking advantage of developed numerical simulation model of FPSO motion. Up until now, various studies have been conducted about thrust control and allocation for dynamic positioning systems maintaining positions of ships or marine structures in diverse sea environmental conditions. In the existing studies, however, the dynamic positioning systems consist of only feedback control gains using a motion of vessel derived from environmental loads such as current, wind and wave. This study addresses dynamic positioning systems which have feedforward control gain derived from forecasted value of a motion of vessel occurred by current, wind and wave force. In this study, the future motion of vessel is forecasted via Brown's Exponential Smoothing after calculating the vessel motion via a selected mathematical model, and the control force for maintaining the position and heading angle of a vessel is decided by the feedback controller and the feedforward controller using PID theory and forecasted vessel motion respectively. For the allocation of thrusts, the Lagrange Multiplier Method is exploited. By constructing a simulation code for a dynamic positioning system of FPSO, the performance of feedforward control system which has feedback controller and feedforward controller was assessed. According to the result of this study, in case of using feedforward control system, it shows smaller maximum thrust power than using conventional feedback control system.

In-situ modal testing and parameter identification of active magnetic bearing system by magnetic force measurement and the use of directional frequency response functions (전자기력 측정과 방향성주파수 응답함수를 이용한 능동 자기베어링 시스템의 운전중 모드시험 및 매개변수 규명)

  • Ha, Young-Ho;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1156-1165
    • /
    • 1997
  • Complex modal testing is employed for the in-situ parameter identification of a four-axis active magnetic bearing system while the system is in operation. In the test, magnetic bearings are used as exciters as well as actuators for feedback control. The experimental results show that the directional frequency response function, which is properly defined in the complex domain, is a powerful tool for identification of bearing as well as modal parameters. It is also shown that the position and current stiffnesses can be accurately estimated using the relations between the measured forces, displacements, and currents.

Vibration Control of Reinforced Concrete Slabs (철근콘크리트 슬래브의 진동제어)

  • 변근주;노병철;유동우;이호범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.201-206
    • /
    • 1993
  • As the vibration loads are variable and the design criteria are more strict, in this study, the dynamic characteristics of the slab is analyzed and the and the vibration is controlled for the special peculiarity of structures. First, the procedure of dynamic analysis is developed by the finite element method and then examined by using the slab model tests. Second, in order to improve the dynamic characteristics, the effects of the number of supports, material properties, position of exciting force, added mass and dynamic balance on the dynamic behavior of reinforced concrete slabs are analysed. It is concluded that the vibration can be controlled by the change in the natural frequency of system and the use of the high-strength concrete or polymer impregnated concrete (PIC), and the dynamic characteristics can be considerably affected by the arrangement of equipments, added mass, and dynamic balance, etc.

  • PDF

Rotordynamic Analysis of a Labyrinth Seal Using the Moody's Friction-Factor Model (Moody 마찰계수식을 사용한 래버린스 실의 회전체 동역학적 해석)

  • Ha, Tae Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.52-58
    • /
    • 1999
  • The leakage and rotordynamic coefficients of see-through type gas labyrinth seals are determined using a two-control-volume-model analysis with Moody's wall-friction-factor formula which is defined with a large range of Reynolds number and relative roughness. Jet flow theory are used for the calculation of the recirculation velocity in the cavity. For the reaction force from the labyrinth seal, linearized zeroth-order and the first-order perturbation equations are developed for small motion about a centered position. The leakage and rotordynamic coefficient results of the present analysis are compared with Scharrer's theoretical analysis using Blasius' wall-friction-factor formula and Pelletti's experimental results. The comparison shows that the present analysis using Moody's wall-friction-factor formula and Scharrer's theoretical analysis using Blasius' wall-friction-factor formula give the same results for a smooth seal surface and the range of Reynolds number less than $10^5$.

  • PDF

Mandibular Posterior Rehabilitation Case after Occlusal Plane Correction using Micro-Implant Anchorage (Micro-Implant를 이용한 교정치료로 교합평면 개선 후 하악 구치부 수복증례)

  • Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.2
    • /
    • pp.143-150
    • /
    • 2004
  • Endosseous implants have been used to provide anchorage control in orthodontic treatment without the need for special patient cooperation. However these implants have limitation like space requirement, cost, equipments. Recently titanium micro-implant for orthodontic anchorage was introduced. Micro-implants are small enough to place in any area of the alveolar bone, easy to implant and remove, and inexpensive. In addition, orthodontic force application can begin almost immediately after implantation. The mandibular first, maxillary first, mandibula second, and maxillary second molars were the four most commonly missing teeth in adult sample. In case of posterior molar teeth missing, deflective contacts in any position, over time, has produced pathologic change of occlusal scheme because of extrusion of opposing teeth. This case had interocclusal space deficiency by mandibular right molars missing over time. The micro-implants had been used for intrusion of maxillary right molars for interocclusal space. The micro-implant would be absolute anchorage for orthodontic movement. Therefore, the micro-implant would be effective method for correction of occlusal plane.