• Title/Summary/Keyword: Position/Force Control

Search Result 700, Processing Time 0.048 seconds

Stroke and Position Control for Springless LOA (Springless LOA를 이용한 스트로크 및 포지션 제어)

  • Jang, S.M.;Kwon, C.;Jeong, S.S.;Lee, S.L.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.87-89
    • /
    • 2001
  • The unbalanced reciprocation force due to armature reaction field decreases the advantage of moving coil linear motor, such as a high degree of linearity and controllability in the force and motion control. This paper firstly describes the coil inductance, and the unbalanced force. Secondly, the dynamic simulation algorithm considering the armature reaction effect and variable inductance is proposed. Thirdly, the control algorithm is proposed to reciprocate a load without mechanical spring at the required stroke and position. Finally, the validity of the proposed algorithm is confirmed by experiments.

  • PDF

A Study of Position Control and Design for Microelectrostatic Mechanical Actuator (미세 작동기의 설계 및 위치 제어에 관한 연구)

  • Choi, Won-Seok;Jee, Tea-Young;Kim, Kun-Nyun;Park, Hyo-Derk;Heo, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.911-916
    • /
    • 2003
  • Microactuator is frequently used in some optical or electrical applications such as light modulators and spatial scanner devices. When microactuator is implemented, it should be operated at accurate positions proportional to input voltage. Therefore in order to obtain rapid responses and reduced errors, a position control technique is used. In the paper, design procedure for the mems actuator and a typical PID controller is adapted to improve performance of microactuator as well. Also electrostatic force for the torsional microactuator is calculated via well-known Hornbeck's method.

  • PDF

Force Control with the PD - Optimal Control of a Robot Manipulator (PD-최적 제어를 이용한 로봇 매니퓰레이터의 FORCE CONTROL)

  • Cho, Byung-Chan;Jung, Yong-Cheol;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.990-993
    • /
    • 1988
  • RMFC (Resolved Motion Force Control) is the method to control the Cartesian force and position using FCC (Force Convergent Control) instead of the complicated dynamic equations of the manipulator. The gain parameters of the controller are adjusted through many trial and errors. In this paper PD-optimal control method is introduced to give optimal gain parameters which minimize the difference between actural acceleration and desired acceleration. To show the validitiesn of the proposed method computer simulations are performed for the two-link manipulator.

  • PDF

Friction Force Detection for Joints of a Parallel Manipulator Using Gravitational Force (중력을 이용한 병렬 매니퓰레이터 구동부의 마찰력 검출)

  • 이세한;송정규;송재복;최우천;홍대희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.422-422
    • /
    • 2000
  • Parallel manipulators have been used to a variety of applications, including the motion simulators and mechanism for precise machining. A Stewart-Gough type parallel manipulator is composed of six linear joints which have wider contact areas than revolute ones, so linear joints are more affected by frictional force. First, the reference trajectories are computed from the model of the parallel manipulator assuming that it is subject to only the gravitational force and no friction exists. In the actual operation where friction exists, the control inputs, which correspond to the friction forces, are obtained by forcing the actual joint variables to follow these trojectories by proper control. It is shown that control performance can be improved when the friction compensation based on this information is added to the controller for position control of the moving plate of a parallel manipulator.

  • PDF

Unified Approach for Force/Position Control in the Vehicle Body Sanding Process

  • Nguyen, Chi Thanh;Lee, Jae Woo;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.14 no.3
    • /
    • pp.25-31
    • /
    • 2017
  • This study presents a methodology for simulating a unified approach that controls interaction force between tool and objective by using a synthesis method of robot interacting control law for stabilizing the transient process of motion. Root locus is used to analyze stabilization of motion deviation characteristics. Based on responses of motion deviation, contact force is derived to satisfy exponential stability and we generate control input with respect to motion trajectories and interaction force. Moreover, simulation is applied to experimental application of a Cartesian robot driven by two stepper motors, and the noise of feedback signals is considered as presence of system inaccuracies, and the unified approach of interaction force control is examined precisely.

Position Sensor Fault Tolerant Control of Permanent Magnet Synchronous Generator (영구자석 동기발전기의 위치센서 고장 회피 제어)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.351-357
    • /
    • 2011
  • Rotor position is essentially required for vector control of permanent magnet synchronous generator(PMSG) and position sensor such as encoder are generally used for the purpose of position sensing. However, the use of position sensor degrades reliability of PMSG control system. This paper presents position sensor fault tolerant control method for PMSG control system. Sensorless position estimator based on extended electromotive force(EMF) is operated in parallel with sensored vector control to provide rapid reconfiguration capability to sensorless vector control at the moment of position sensor fault detection. Experimental results show the effectiveness of the proposed method.

A modeling of the magnetic levitation stage and its control

  • Nam, Taek-Kun;Kim, Yong-Joo;Jeon, Jeong-Woo;Lee, Ki-Chang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1082-1087
    • /
    • 2003
  • In this paper, we address the development of magnetic levitation positioning system. This planar magnetic levitator employs four permanent magnet liner motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for drive levitation object called a platen This stage can generate six degrees of freedom motion by the vertical and horizontal force. We derived the mechanical dynamics equation using lagrangian method and used coenergy to express an electromagnetic force. We proposed control algorithm for the position and posture control from its initial value to its desired value using sliding mode control. Some simulation result is provided to verify the effectiveness of the proposed control scheme.

  • PDF

Pneumatic Cylinder Position Control Algorithm for Control Consistency (공기압 실린더의 위치제어 일관성을 위한 제어 알고리즘)

  • Lee, Ji-Hoon;Nam, Yun-Joo;Park, Myeong-Kwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.985-990
    • /
    • 2007
  • This paper presents a novel control algorithm for position control of pneumatic cylinder. Generally, it is difficult to control the pneumatic servo system, due to nonlinearities such as air compressibility, the opening area of the valve, and frictional force between the cylinder and the piston. Especially, it is of significant importance for the control consisten-cy to return the cylinder pressures at equilibrium point to the initial states, still with guaranteeing the continuity of the pressures. For this purpose, the proposed control algorithm makes pressures of both cylinder chambers identical in magnitude but different in direction. The effectiveness and practicability of the control algorithm for the precise position control of the pneumatic cylinder are verified through the simulation study.

  • PDF

Development and Control of a Roadway Seam Tracking Mobile Robot

  • Cho, Hyun-Taek;Jeon, Poong-Woo;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2502-2507
    • /
    • 2003
  • In this paper, a crack sealing robot is developed. The crack sealing robot is built to detect, track, and seal the crack on the pavement. The sealing robot is required to brush all dirt in the crack out for preparing a better sealing job. Camera calibration has been done to get accurate crack position. In order to perform a cleaning job, the explicit force control method is used to regulate a specified desired force in order to maintain constant contact with the ground. Experimental studies of force tracking control are conducted under unknown environment stiffness and location. Crack tracking control is performed. Force tracking results are excellent and the robot finds and tracks the crack very well.

  • PDF