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Abstract: In this paper, we address the development of magnetic levitation positioning system. This planar magnetic levitator
employs four permanent magnet liner motors. Each motor generates vertical force for suspension against gravity, as well as
horizontal force for drive levitation object caled a platen This stage can generate six degrees of freedom motion by the vertical
and horizonta force. We derived the mechanical dynamics equation using lagrangian method and used coenergy to express an
electromagnetic force. We proposed control algorithm for the position and posture control from its initial value to its desired
value using sliding mode control. Some simulation result is provided to verify the effectiveness of the proposed control scheme.
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1. INTRODUCTION

The importance of high precision positioning mechanism is
increased with the high demand of advanced technologies
delivering products with superior performance and good
tolerance. We can easily found that high precision positioning
mechanisms have play an important role in the field of modern
fabrication process such as ultra precision machining,
precise alignment of optical device, and wafer steppers in
semiconductor manufacturing. Such devices could be support
micro or even nano positioning accuracy, high bandwidths of
operation, and sufficient stiffness. Piezoelectric actuators
provide the necessary stiffness and positioning accuracy but
have some restriction with its traveling range. Utilization of
mechanical bearings or cascading arrangements suffer from
slow speed of response and the presence of undesirable
mechanical elements, such as clearances and friction. The
combination of linear motor and air-bearing is a genera
strategy to realize long stroke movement with high velocities.
But to achieve a large and accurate travel in multiple degrees
of freedom using linear motor with non-contact bearing, it
needs complex system configuration. In contrast, the magnetic
levitation is contact-less mechanism which enabling high
precision positioning accuracy and multiple d.o.f (degrees of
freedom) could be achieved without mechanical guide or
compounding.

In the previous works for the control of magnetic levitation
positioner, Cho[3] tackled position control of magnetic
suspension actuator with one d.o.f using sliding mode control
method. Mittal [9] addressed long travel motion control of a
magnetic suspension actuator using a combination of feedback
linearization technigue  and discretetime  delay
compensation algorithm. Kim et a. developed magnetic
levitation stage with a six degree of freedom( 6 DOF) [6].
Holmes modified the stage to develop a long range scanning
stage and achieved sub-nanometer resolution [8].

We designed magnetic levitation stage as inferred the result
of Kim[6]. The differences between Kim [6] and our work
are as follows. A linear approximation and lead-lag
compensator was applied to control the magnetic levitation
stage [6]. In our work, we derived mechanical dynamics
equation of the platen using Lagrangian equation and
proposed configuration control algorithm using sliding mode
control method. The dliding mode control method can be
applied to a nonlinear system in the globa sense, and the
performance and stability robustness to model uncertainty and
disturbances could be achieved by control switching. Finaly,
we verified the effectiveness of the proposed control scheme
from anumerical simulation.

2. MAGNETIC LEVITATION STAGE

2.1 System Configuration

Magnetic levitation stage is as shown in Fig. 1. This
levitator composed by four permanent magnet linear motors.
Each motor generates vertical force for suspension against
gravity and horizontal force for drive. The actuators for this
magnetic  levitator are three phase surface-wound
surface-permanent —magnet linear motors.

Fig. 1. Magnetic levitation stage.

The configuration of stage system is as shown in Fig. 2.
The plane displacements of platen can be measured by three
laser interferometers with sub-nanometer resolution and three
capacitance probes adapted for the measurement of levitation
gap and rotation angles. The desired command calculated on
the contral algorithm will be transferred to D/A signa to
generate suitable current input.
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Fig. 2. Configuration of system.

3. CONTROL
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3.1 Mechanical System Modeling

In this section, we will derive the dynamics equation of the
magnetic levitation stage. The coordinates of platen which is
the levitation part of the stage is shown in Fig. 3.

Fig. 3. Coordinates of the platen.

In the figure, X, and X represent inertial coordinates
frame and object coordinates frame, respectively.

Heren, =[x,v,2]" . n, =[4,0,]" denotes the position and
orientation vector with coordinates in the inertial coordinates
frame, v, =[u,v,w]" ,v, =[p,q,r]" denotes the linear and

angular velocity vector with coordinates in the object
coordinate frame.

The platen’s movement path relative to the inertia frame is
given by avelocity transformation

= J1(12)% 1
Cycld —sych+Cysfdsp Sy Sp+CyCosld
Ji(ny)=|swcld cychp+sSysdsp —cCysp+SyChshd
—sd cosp coco
where J; is a transformation matrix which is related through
the functions of the Euler angles. y (yaw), 6 (pitch),

¢ (roll). The inverse velocity transformation can be written

1.
Vi=Jim @)
where J, is skew-symmetric matrix, i.e. J ()7 =
3. 012)"

The object-fixed angular velocity vector v, =[p qr]" and the

Euler rate vector 7, are related through a transformation

matrix J according to

-1 .
Vo = J57(172)1 ©)
It should be noted that the angular velocity vector V% cannot

be integrated directly to obtain actual angular coordinates. The
orientation of the object-fixed reference frame with respect to
theinertial frameis given by

é 0 0
Vo =|0|+Cyy| 0 [+C,,Cyy| O 4
0 0 v
1 0 -s#
=0 cg cOs¢|n,
0 —s¢p cOco

From the above relations, we can formulate a suitable
expression for the platen’ s kinetic energy

1 1 1+
T==mv; Vv, +=V, Hv
2 1v1 2 2 2

1 1 ©)
= >mif iy + <13 33T HIg 0,

2 2
and potential energy
V =mgz (6)
Then we can compute the lagrangian L according to
L=T-V 7
Finally, applying the lagrange equation
d oL, oL
—()-==u ®)
dt 69" oq
We can get dynamics equation
M G+h +hy(q,d)=u 9

a=[xy,zw,0,4]" is a state variables that represent the
motion of system. u=[F " iS input vector which denotes
forces and moments acting on the platen in the object-fixed
frame. M e R®® isan inertia matrix.

3.2 Electrical System Modeling
In this section we will consider an electrical dynamics for

the levitation stage. Electrical dynamics can be derived from
the Faraday’s law. The voltage equations of three phase motor
can be written

Rklk +%=kak=l213 (10)

where R, is the resistance of winding and vy is the flux

linkage of each phase winding. We can represent 3,

A (i %Y, 2) = A (i, x =1, Y, 2) (11)

We know that the flux linkage is periodic function with
respect to x direction. Using chain-rule, we can get voltage
equations as

: : di
Reiy + L (i, X y,z)%+ B + By +Eg =V (12)

where

oA oA oA
kK g 9% k

. Dy .
=K By =K% By =Xy, Ey=—K 2z (13
G T PR Ty N e T, (13
It is well known that coenergy is convenient quantity for
expressing the electromagnetic force. We will introduce the

coenergy to derive the electromagnetic force generated by the

Ly
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current input. Derivative of co-energy can be defined

3

AW, = > Al + fodx+ fody+ fdz (14)
k=1

Integrating  eq. (14) from (0,0,0,0,0,0) to

(i1,i5,i3, %Y, ), then we can get

3 i
We =;L A (n,%,y,2)dn (15)

Applying the chain-rule to eq. (15) and comparing with eq.
(14), we have

Ak (i %Y, 2) = DWW (iz,1,13, %, Y, 2), k =1,2.3
fissiz, iz X Y, 2) = DWW (iy,i2,13, %, Y, 2)
fy(is,iz,ig, %Y, 2) = DW,(iy,i5,i3,X, Y, 2)

f, (1,052,153, XY, 2) = DgWc(i1,15,i3, %, Y, 2)
where D, reveals k th partial differentiator.

(16)

Therefore, generating force f,, f,, f, which has 27/3

phase difference can be obtained

3
fuiniziis) =D Fuali X~ (k=1, 3.2
k=1

3
o : |
fy(|1,|2,|3):ZFye(lk,x—g(k—l),y,z) (17)
k=1

3
fz(il,iz,m=Zer(ik,x—'§(k—1>,y, 2

where F,,Fy., F, ae

i
Fie = [[Dad(r. %y, by
i
Fye = J-ODSJ'(U: X, y,2)dn (18)

i
Foo = [ Dol %y, 2

Now we will consider flux linkage A .
written

A% Y, 2)=An(X Y, 2) + 4, (i,X,Y,2) (19
where A,and A, reveds flux linkage generated by magnet

Flux linkage can be

array and current input into the stator, respectively. The flux
linkage A,,, decreased by increasing the height of platen and
changed with respect to X direction. Then we have

An(X Y, 2)=a(2)1,(X),0<a(2) £1 (20)
where ¢(Z) is monotone decreasing function and A, (X) is
aperiodic function with respect to X axis.

Theflux linkage A, can be represented

A (X Y,2)=L(2)i (21)

since the inductance L is only influenced by the height of
platen.

Now we can calculate E,, E, E,ineq. (12)

Ex(i, %X Y, 2) = Xa(2)ga(X)

Ey(,%y,y,2=0 (22)
.G y,2.2) = 19502 7,09+ E2
da(X)

where g, denotes

Substituting eg. (22) into eg. (12), we have

LS d|k R, - Z[da(z)

(Aa(¥) + 4, (¥)) +
dL(z) (23
Ti] —Xa(2)g,(X) - ya(2)gp (y) + Vi
Forces generated by current input will be
3
I .
=D a(@ga(x— (k-1
k=1 (24)

dz

We applied d-q transformation to eq. (23) and eq.(24). The d-q
transformation was introduced to separate the stator current
component that generates torque. Then, force equations and
commutation in d-q frame do not contain the position
dependence with respect to the stator. Therefore, nonlinearity
due to the trigometric function in the model can be eliminated.
Fig. 4 depicts d-q frame attached on the platen[6].

O da(2) | . 1dL(D) .,
=2 gy et gk i 5= il

.'-. HE
T
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Fig. 4. d-q frame attached to the platen.

It is shown that the q axis is orthogonal to the d axis and leads
it by 90°. Applying d-q transformation, we have voltage
equations on d-q axis from eqg. (23)

da(z) dL(2) .

L(z) T dld _

-Rig —2( Agr(X) + e ig)—
(29 0+ 2 L2,
| (25)
|
L@t = vy ~Rig - 52 0+ H i) -

k(D)9 () + 2L (2%

Forces f,, f, canbe calculated

z
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£ = 2182 i + 252 2, )
3dL(2) .0 .2
+Z & (ig +ig) (26)

f, =2 a(@9a ()i +a(DFq (]

3.3 Therelations between forces and torque

Each motor generates vertical force for suspension against
gravity, as well as horizontal force for drive a platen.
Therefore, this stage can generate six degrees of freedom
motion by the vertical and horizontal force. The relations
between d.o.f and generating forces can be verified as shown
inFig. 5.

Platen P

Fig. 5. The relation between forces and torque on the platen.

The horizontal forces can be represented
4 Fx fix + fau
i=1 FZ 4
z fiz
i=1 Ixvz

where []xyz denotesinertia coordinates frame. The torques
on the center of the mass of the platen will be

Ty 4
T=|1y |= Z T
r, | =
(28)

by fy, +byfy, +05f5, +b,fy, —Cofyy —Cyfyy
=| ¢ fy, +C3fy, —anfy, —ayfy, —agfy, —ayfy,

a,fyy +ayfyy —byfy —bsfy
where [a,b;,c;]" reveals the displacement vectors from the

center of mass of the platen to the center of mass of each of
four magnet array

q; X
b =07y (29)
G 4 Xyz

Finally, we can compile the relation between forces and torque
on the platen

o
Fyx 1 0 0 0 1 0 0 O0]fy
Fy 0 0 1 0 0 0 1 0 | fyy (30)
F,1 |0 1 0 1 0 1 0 1| f,,
X 0 b -¢ b 0 by -c by |fy
Ty a -a 0 -a ¢ -a 0 -a|fy
77 -bp 0 & 0 -by 0 =-a, 0 | fy
f4z,

3.4 Control Srategy

Based on the mechanical and electrical dynamics equation,
we can design the control input to achieve desired movement
of platen. The procedure to design control agorithm is as
follows.

® To design control forces and torques (F,7z ) ineq. (9) to
move the platen from itsinitial postureto its desired one.

® Caculate desired forces( fi, ~ f4,) on the stator from
eg. (30).

® Using eg. (26), we can get the desired current iy, igq

which can generate desired forces in the second step.
® After calculating desired voltage v, Vg from eg. (25),

then we have 3 phase input voltage using d-q inverse
transformation.

In this section, we will propose the control algorithm which
is needed in the first step. Here we consider sliding mode
control method which maintains robustness in the presence of
amodel uncertainty and external disturbance.

Consider inertiamatrix in (6) as

M=M°+aAM (31)
where, M° denotes estimated value and AM  represents an
error value between real value and estimated value.

Let us assume each components of the inertia matrix can be
estimate its maximum value

[AM;; (@) <M (32)

To compensate the gravity terms, we introduce control input

u=v+h (33

where v denotes new control input and h, is a gravity

compensation term.
Substituting (7) and (9) into (6), then we have

G=M°"(v+d) (34)

d(qg,q,d) =-AMQg - h, denotes an estimated error and
nonlinear terms of the dynamics equation. We assume d can
be estimated by scalar function d(q,t)

|d|<d (35)

To achieve tracking performance, define the tracking errors
as

e(t) =q-q, é(t) =q- qr (36)
where, ¢ and ¢, denote current state variable and desired
state variable, respectively.

Here we introduce switching surface

o(t)=¢é+Ae

A =diag(ly, A,

From eq. (37), we can see tha o(t) >0 means
stabilization of error variable € because it makes stable error
equation €= —Ae. The control problem is to derive control
input u which guarantees o(t) — 0 and preserve states

@37

q, g on the dliding surface. To derive such a control input, we
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can consider Lyapunov function candidates
1 ¢

V= E oo (38)
Time differentiation of eg. (38) is
V=0oc'c

=o' (B+ A€ (39)

-1 -1
="M v+M%d-¢, + A&
Considering new control input as

v=MO(§, - Ae-K-2) (40)

gl
where, K > “M 0“-&

Then, we have
V =lo|(K £+M°) <0 (41)

Therefore, o(t) — 0,t — oo was achieved by control input

(40). The control input to achieve configuration control
purpose can be obtained from eqg. (33) and eq. (40)

u=MO@G, —Aée-K-Z)+hy (42)
o]

3.5 Simulation Result

To illustrate the effectiveness of the proposed control
scheme, we present a simulation result for an magnetic
levitation stage. In the simulation, initial valueg,and desired

vaue g, are (0,0,2504m0.1,0.2,0.30,0,0,0,0,0) and
(0,0,350.m,0,0,0,0,0,0,0,0,0)" , respectively. We set the
m=5.47kg] . g=9gm/s’] .

A =diag[3,3,3,3,3,3] . Estimated value M °was considered
to 40% of the real value. In the simulation we introduced

parameters  as

smoothing function u=M 0((']'r —Aé— KL) +h,
o]+

6 >0 to decrease chattering phenomenon . The numerical
simulation result for the configuration control is shown in Fig.
6. Fig. 6(@) and Fig. 6(b) show the time evolution of state
variables. Fig. 6(c) and Fig. 6(d) depict control input
generated by proposed control strategy.
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Fig. 6(a). Time evolution of states: X, y, z.
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Fig. 6(b). Time evolution of states: @, 6, .
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Fig. 6(c). Time evolution of control inputs:  f, f,,

f,-

08

Fig. 6(d). Time evolution of control inputs: 7,,7,,7,.

From the above result, we see that control purpose was
achieved by proposed control algorithm.

4. CONCLUSIONS

In this paper, we addressed configuration control for the
magnetic levitation stage. We derived dynamic equation of the
platen and proposed control strategy which can control its
position and posture. To derive control input, we applied
dliding mode control method which can be maintain the
peformance and debility robustness to modd uncertainty and
digurbances. Findly, We verified an effectiveness of the control
algorithm by numerical simulation.
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