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Abstract: In this paper, we address the development of magnetic levitation positioning system. This planar magnetic levitator 
employs four permanent magnet liner motors. Each motor generates vertical force for suspension against gravity, as well as 
horizontal force for drive levitation object called a platen This stage can generate six degrees of freedom motion by the vertical 
and horizontal force. We derived the mechanical dynamics equation using lagrangian method and used coenergy to express an 
electromagnetic force. We proposed control algorithm for the position and posture control from its initial value to its desired 
value using sliding mode control. Some simulation result is provided to verify the effectiveness of the proposed control scheme. 
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The importance of high precision positioning mechanism is 
increased with the high demand of advanced technologies 
delivering products with superior performance and good 
tolerance. We can easily found that high precision positioning 
mechanisms have play an important role in the field of modern 
fabrication process  such as ultra precision machining, 
precise alignment of optical device, and wafer steppers in 
semiconductor manufacturing. Such devices could be support 
micro or even nano positioning accuracy, high bandwidths of 
operation, and sufficient stiffness. Piezoelectric actuators 
provide the necessary stiffness and positioning accuracy but 
have some restriction with its traveling range. Utilization of 
mechanical bearings or cascading arrangements suffer from 
slow speed of response and the presence of undesirable 
mechanical elements, such as clearances and friction. The 
combination of linear motor and air-bearing is a general 
strategy to realize long stroke movement with high velocities. 
But to achieve a large and accurate travel in multiple degrees 
of freedom using linear motor with non-contact bearing, it 
needs complex system configuration. In contrast, the magnetic 
levitation is contact-less mechanism which enabling high 
precision positioning accuracy and multiple d.o.f (degrees of 
freedom) could be achieved without mechanical guide or 
compounding.  

2. MAGNETIC LEVITATION STAGE  
 
2 .1 System Configuration 

Magnetic levitation stage is as shown in Fig. 1. This 
levitator composed by four permanent magnet linear motors. 
Each motor generates vertical force for suspension against 
gravity and horizontal force for drive. The actuators for this 
magnetic levitator are three phase surface-wound 
surface-permanent –magnet linear motors.  

 

 
 

Fig. 1. Magnetic levitation stage. 
 
The configuration of stage system is as shown in Fig. 2. 

The plane displacements of platen can be measured by three 
laser interferometers with sub-nanometer resolution and three 
capacitance probes adapted for the measurement of levitation 
gap and rotation angles. The desired command  calculated on 
the control algorithm will be transferred to D/A signal to 
generate suitable current input.  

In the previous works for the control of magnetic levitation 
positioner, Cho[3] tackled  position control of magnetic 
suspension actuator with one d.o.f using sliding mode control 
method. Mittal [9] addressed long travel motion control of a 
magnetic suspension actuator using a combination of feedback 
linearization technique and discrete-time delay  
compensation algorithm. Kim et al.  developed  magnetic 
levitation stage with a six degree of freedom( 6 DOF) [6]. 
Holmes modified the stage to develop a long range scanning 
stage and achieved sub-nanometer  resolution [8].  

 

 

We designed magnetic levitation stage as inferred the result 
of Kim [6].  The differences between  Kim [6] and our work  
are as follows. A linear approximation and lead-lag 
compensator was applied to control the magnetic levitation 
stage [6]. In our work, we derived mechanical dynamics 
equation of the platen using Lagrangian equation and  
proposed configuration control algorithm using sliding mode 
control method. The sliding mode control method can be 
applied to a nonlinear system in the global sense, and the 
performance and stability robustness to model uncertainty and 
disturbances could be achieved by control switching. Finally, 
we verified the effectiveness of the proposed control scheme 
from a numerical simulation. 

 
Fig. 2. Configuration of system. 

  
3. CONTROL 

 



ICCAS2003                           October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea       
 

3.1 Mechanical System Modeling 
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In this section, we will derive the dynamics equation of the 
magnetic levitation stage. The coordinates of platen which is 
the levitation part of the stage is shown in Fig. 3.  
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From the above relations, we can formulate a suitable 
expression for the platen’s kinetic energy  
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and  potential energy 
mgzV =                                        (6) 

Then we can compute the lagrangian  according to  L
Fig. 3. Coordinates of the platen. 

VTL −=                                       (7) 
 

Finally, applying the lagrange equation In the figure, Σ and  represent inertial coordinates 

frame and object coordinates frame, respectively.  
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Here , denotes the position and 

orientation vector with coordinates in the inertial coordinates 
frame, , denotes the linear and 

angular velocity vector with coordinates in the object 
coordinate frame.  

Tzyx ],,[1 =η

wvuv ,,[1 =

T],,[2 ψθφη =

T] rqpv ],,[2 =
T

We can get dynamics equation  

uqqhhqM =++ ),(21 &&&                    (9) 
Tzyxq ],,,,,[ φθψ=

66×

is a state variables that represent the 

motion of system. u is input vector which denotes 

forces and moments acting on the platen in the object-fixed 
frame. 

TF ][ τ=

∈RM  is an inertia matrix. 

The platen’s movement path relative to the inertial frame is 
given by a velocity transformation 

1211 )( vJ ηη =&                                    (1)  
3.2 Electrical System Modeling 
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J )( 21
  In this section we will consider an electrical dynamics for 

the levitation stage. Electrical dynamics can be derived from 
the Faraday’s law. The voltage equations of three phase motor 
can be written where  is a transformation matrix which is related through 

the functions of the Euler angles: 
1J

ψ (yaw), θ  (pitch), 

φ (roll). The inverse velocity transformation can be written 
.3,2,1, ==+ kv
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d
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where is the resistance of winding and is the flux 

linkage of each phase winding. We can represent  
kR kλ

λk
1

1
11 η&−= Jv                                     (2) 

where is skew-symmetric matrix, i.e.  

. 
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We know that the flux linkage is periodic function with 
respect to x  direction. Using chain-rule, we can get voltage 
equations as 

The object-fixed angular velocity vector and the 

Euler rate vector 

Trqpv ][2 =

2η&  are related through a transformation 

matrix  according to  2J kkzkykx
k

kkkk vEEE
dt

di
zyxiLiR =++++ ),,,(    (12) 
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,,,  (13) It should be noted that the angular velocity vector  cannot 

be integrated directly to obtain actual angular coordinates. The 
orientation of the object-fixed reference frame with respect to 
the inertial frame is given by 

2v

It is well known that coenergy is convenient quantity for 
expressing the electromagnetic force. We will introduce the 
coenergy to derive the electromagnetic force generated by the 
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current input. Derivative of co-energy can be defined Now we can calculate in eq. (12) zyx EEE ,,
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Integrating eq. (14) from  to 

, then we can get 
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Substituting eq. (22) into eq. (12), we have 
Applying the chain-rule to eq. (15) and comparing with eq. 
(14), we have 
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Forces generated by current input will be 
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where reveals th partial differentiator. kD k

Therefore, generating force which has zyx fff ,, 3/2π  

phase difference can be obtained 
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We applied d-q transformation to eq. (23) and eq.(24). The d-q 
transformation was introduced to separate the stator current 
component that generates torque. Then, force equations and 
commutation in d-q frame do not contain the position 
dependence with respect to the stator. Therefore, nonlinearity 
due to the trigometric function in the model can be eliminated. 
Fig. 4 depicts d-q frame attached on the platen[6].  
 

where  are zeyexe FFF ,,
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Now we will consider flux linkage λ . Flux linkage can be 
written Fig. 4. d-q frame attached to the platen. 

),,,(),,(),,,( zyxizyxzyxi rm λλλ +=             (19)  
It is shown that the q axis is orthogonal to the d axis and leads 

it by . Applying d-q transformation, we have voltage 
equations on d-q axis from eq. (23) 

o90
where mλ and rλ reveals flux linkage generated by magnet 

array and current input into the stator, respectively. The flux 
linkage mλ decreased by increasing the height of platen and 

changed with respect to x  direction. Then we have  
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where )(zα is monotone decreasing function and )(xaλ  is 

a periodic function with respect to x  axis. 

The flux linkage rλ  can be represented  

izLzyxr )(),,( =λ                            (21) 

since the inductance is only influenced by the height of 
platen. 

L Forces  can be calculated zx ff ,
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3.4 Control Strategy 
Based on the mechanical and electrical dynamics equation, 

we can design the control input to achieve desired movement 
of platen. The procedure to design control algorithm is as 
follows. 
 To design control forces and torques ( τ,F ) in eq. (9) to 
move the platen from its initial posture to its desired one.  
 Calculate desired forces( ) on the stator from 
eq. (30). 

zx ff 41 ~
 
3.3 The relations between forces and torque  Using eq. (26), we can get the desired current 

which can generate desired forces in the second step. 
qd ii ,  

Each motor generates vertical force for suspension against 
gravity, as well as horizontal force for drive a platen. 
Therefore, this stage can generate six degrees of freedom 
motion by the vertical and horizontal force. The relations 
between d.o.f and generating forces can be verified as shown 
in Fig. 5.  

 After calculating desired voltage from eq. (25), 
then we have 3 phase input voltage using d-q inverse 
transformation. 

qd vv ,

 
In this section, we will propose the control algorithm which 

is needed in the first step. Here we consider sliding mode 
control method which maintains robustness in the presence of 
a model uncertainty and external disturbance.  

 

 

Consider inertia matrix in (6) as 
MMM ∆+= 0                                  (31) 

where, 0M  denotes estimated value and M∆  represents an 
error value between real value and estimated value. 

Fig. 5. The relation between forces and torque on the platen. Let us assume each components of the inertia matrix can be 
estimate its maximum value  

 
The horizontal forces can be represented 
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To compensate the gravity terms, we introduce control input 

1hvu +=                                   (33) 

where  denotes new control input and  is a gravity 
compensation term.  

v 1h

where  denotes inertial coordinates frame. The torques 
on the center of the mass of the platen will be 

XYZ[] Substituting (7) and (9) into (6), then we have 
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2),,( hqMqqqd −∆−= &&&&  denotes an estimated error and 

nonlinear terms of the dynamics equation. We assume  can 
be estimated by scalar function  

d
),(ˆ tqd
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To achieve tracking performance, define the tracking errors 
as 

where reveals the displacement vectors from the 
center of mass of the platen to the center of mass of each of 
four magnet array 
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where, and denote current state variable and desired 
state variable, respectively. 

q rq

Here we introduce switching surface  

Finally, we can compile the relation between forces and torque 
on the platen 
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From eq. (37), we can see that 0)( →tσ means 

stabilization of error variable because it makes stable error 
equation 

e
ee Λ−=& . The control problem is to derive control 

input  which guarantees u 0) →t(σ and preserve states 

on the sliding surface. To derive such a control input, we qq &,
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can consider Lyapunov function candidates 
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Time differentiation of eq. (38) is 
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Considering new control input as 
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where, dMK ˆ0 ⋅>  Fig. 6(b). Time evolution of states: ψθφ ,, . 

 

Then, we have 

0)( 0 ≤±−= dMKV σ&                         (41) 

Therefore, ∞→→ tt ,0)(σ was achieved by control input 
(40). The  control input to achieve configuration control 
purpose can be obtained from eq. (33) and eq. (40) 
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3.5 Simulation Result 
To illustrate the effectiveness of the proposed control 

scheme, we present a simulation result for an magnetic 
levitation stage. In the simulation, initial value q and desired 

value  are and 

( , respectively. We set the 
parameters as m , , 

. Estimated value 

0

0,0,

8.9
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m ,0,,0,0 µ

3,3,3=Λ M was considered 
to 40% of the real value. In the simulation we introduced 

smoothing function 1h0 )( KeqMu r +
+

−Λ−=
δσ

σ
&&& , 

0>δ  to decrease chattering phenomenon . The numerical 
simulation result for the configuration control is shown in Fig. 
6. Fig. 6(a) and Fig. 6(b) show the time evolution of state 
variables. Fig. 6(c) and Fig. 6(d) depict control input 
generated by proposed control strategy.  

Fig. 6(c). Time evolution of control inputs: . zyx fff ,,

 

 

Fig. 6(d). Time evolution of control inputs: zyx τττ ,, . 

   
From the above result, we see that control purpose was 

achieved by proposed control algorithm.  

 
4. CONCLUSIONS 

 
In this paper, we addressed configuration control for the 

magnetic levitation stage. We derived dynamic equation of the 
platen and proposed control strategy which can control its 
position and posture. To derive control input, we applied 
sliding mode control method which can be maintain the 
performance and stability robustness to model uncertainty and 
disturbances. Finally, We verified an effectiveness of the control 
algorithm by numerical simulation. 

Fig. 6(a). Time evolution of states: x, y, z. 
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