• 제목/요약/키워드: Position/Compliance Control

검색결과 53건 처리시간 0.029초

구조적 컴플라이언스 모델링을 이용한 구속받는 유연 매니퓰레이터의 위치/힘 제어 (Position/Force Control of Constrained Flexible Manipulators Using Structural Compliance Modeling)

  • 김진수
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.114-119
    • /
    • 2002
  • The aim of this paper is to clarify the structural compliance of the constrained flexible manipulator and to develop the force control algorithm by using the compliance of the links. The proposed structural compliance control consists of the position control to utilize a flexible manipulator model (considering the compensation for the elastic deflection of links) and the passive force control to utilize the rigid manipulator model (without considering the compensation for the elastic deflection of links). We present the experimental results for the case when applying the only position control, and when applying the structural compliance control. Finally, a comparison between these results is presented to show the performance of our method.

ESP의 전단 변형을 이용한 원격 순응 중심 장치의 순응 중심 조절 방법에 관한 실험적 고찰 (An experimental study on adjusting mechanism of Remote Center Compliance for assembly robots with shear stress control of Elastomer Shear Pads(ESP))

  • 이상철
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.910-914
    • /
    • 2007
  • In this paper, an experimental study is performed to adjust position of compliance center of Elastomer Shear Pad Remote Center Compliance (ESP RCC) device, which is used on precise peg in hole process. In the study, variation of the lateral/axial stiffness of the ESP is proposed as a control parameter to adjust the position of compliance center of the ESP RCC. The variation of the stiffness of the ESP is achieved by controlling the shear stress of the ESP. To control the shear stress of the ESP, position of top side of the ESP is changed while remaining bottom side of the ESP is fixed on the RCC plate. To evaluate effect of the proposed idea, stiffness variations of the ESP on various shear stresses are measured, and variation of the compliance center is measured with the ESP RCC that can control the position of compliance center by using the shear stress. The measured data shows unique characteristics that have not been shown in other types of ESP VRCCs.

수동 Compliance가 능동적 Compliance제어의 안정도에 미치는 영향 (A Stability Effect of Passive Compliance on Active Compliance Control)

  • Chung, Tae-Sang
    • 대한전기학회논문지
    • /
    • 제39권1호
    • /
    • pp.92-106
    • /
    • 1990
  • Active compliance is often used in the control of robot manipulators for the implementation of complex tasks such as assembly, multi-finger fine motion, legged-vehicle adaptive control,etc. This technique balances the interactive force between the manipulator tip and its working environment with its position and velocity errors to achieve the operation of a damped spring. This paper investigates the effecft of passive compliance on system stability with regard to force feedback implementation for actively compliant motion. Usually it is understood that accurate position control require a stiff system. However, theoretical examination of control experiments on a legged suspension vehicle suggests that, if the control includes discrete-time force feedback, some passive compliance is necessssary at the legs of the vehicle for system stability. This can be an important factor to bl considered in manipulator design and control. A theoretical analysis, numerical simulation, and experimental result, confirming the above conclusion, are introduced in this paper.

  • PDF

케미컬 커플러 체결을 위한 순응장치를 이용한 위치/힘 동시제어 (Position/force Control using 6-axis Compliance Device for Chemical Coupler Assembly)

  • 박시백;김한성
    • 한국산업융합학회 논문집
    • /
    • 제25권5호
    • /
    • pp.909-915
    • /
    • 2022
  • In this paper, a robot automation technology for chemical tank lorry unloading is presented. Handling chemical coupler between tank lorry and ACQC system may be hazardous or toxic to human operators, therefore robot automation is essential. Due to tight tolerance between couplers, even small pose error may result in very large internal force. In order to resolve the problem, compliance between male and female couplers should be introduced with 6-axis compliance device with F/T sensing. The proposed robot automation system consists of a collaborative robot, 6-ax is compliance device with F/T sensing, linear gripper, and robot vision. The position/force control algorithm and experimental results for assembling chemical couplers are presented.

Compliance Control of a Five-bar Mechanism

  • Kim, Chong-Sup;Yi, Byung-Ju;Suh, Il-Hong;Oh, Sang-Rok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.51.6-51
    • /
    • 2001
  • We propose a new compliance control algorithm, which is different from previous compliance control methods in that it employs equal or more actuators than the number of the required compliance elements in operational space. The proposed compliance control algorithm ensures precise force and position control. The validity has been shown both theoretically and experimentally.

  • PDF

위치/힘 동시제어를 위한 F/T측정 기능을 갖는 6축 순응기구 설계 (Design of a 6-axis Compliance Device with F/T Sensing for Position/Force Control)

  • 김한성
    • 한국산업융합학회 논문집
    • /
    • 제21권2호
    • /
    • pp.63-70
    • /
    • 2018
  • In this paper, the design of a novel 6-axis compliance device with force/torque sensing capability and the experiment results on force measurement are presented. Unlike the traditional control methods using a force/torque sensor with very limited compliance, the force control method employs a compliant device to provide sufficient compliance between an industrial robot and a rigid environment for more stable force control. The proposed compliance device is designed to have a diagonal stiffness matrix at the tip and uses strain gauge measurement which is robust to dust and oil. The measurement circuit is designed with low-cost IC chips however the force resolution is 0.04N.

3축 그라인딩 로봇을 이용한 자동 경로 생성 및 능동 컴플라이언스 힘 제어 (Auto Path Generation and Active Compliance Force Control Using 3-axis Grinding Robot)

  • 추정훈;김수호;이상범;김정민
    • 제어로봇시스템학회논문지
    • /
    • 제12권11호
    • /
    • pp.1088-1094
    • /
    • 2006
  • In this paper, an auto path generation and an active compliance grinding control using 3-axis farce sensor are presented. These control algorithms enable the grinding robot to follow unknown path of various workpiece shape pattern. The robot is able to go grinding along unknown paths by position controller managing tangential direction angle and cutting speed, with only information about the start position and the end position. Magnitude and direction of normal force are calculated using force data that go through low pass filter. Moreover, normal and tangential directions are separated for force control and velocity control, respectively.

3축 전기유압 매니퓰레이터의 컴플라이언스 제어 (Compliance Control of a 3-Link Electro-Hydraulic Manipulator)

  • 안경관;표성만
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.101-108
    • /
    • 2004
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to obtain stable control performance. In this report, we applied disturbance estimation and compensation type robust control to all axes in a 3-link electro-hydraulic manipulator. From the results of experiment, it was confirmed that the performance of trajectory tracking and attitude regulating is greatly improved by the disturbance observer, which model is the same for each axis. On the other hand, for the autonomous assembly tasks, it is said that compliance control is one of the most available methods. Therefore we proposed compliance control which is based on the position control by disturbance observer for our manipulator system. To realize more stable contact work, the states in the compliance loop are feedback, where not only displacement but also velocity and acceleration are considered. And we applied this compliance control to Peg-in-Hole insertion task and analyzed mechanical relation between peg and hole. Also we proposed new method of shifting the position of end-effector periodically for the purpose of smooth insertion. As a result of using this method, it is experimentally confirmed that Peg-in-Hole insertion task with a clearance of 0.05[mm]can be achieved.

퍼지 논리에 의한 순응기구의 위치/힘 동시제어 (Kinestatic Control using a Compliant Device by Fuzzy Logic)

  • 서정욱;최용제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.917-922
    • /
    • 2004
  • As the tasks of robots become more diverse, some complicated tasks have come to require force and position hybrid control. A compliant device can be used to control force and position simultaneously by separating the twist of the robot's end effector from the twist of compliance and freedom by using stiffness mapping of the compliant device. The development of a fuzzy gain scheduling scheme of control for a robot with a compliant device is described in this paper. Fuzzy rules and reasoning are performed on-line to determine the gain of twists based on wrench error and twist error and twist of compliance and twist of freedom ratio. Simulation results demonstrate that better control performance can be achieved in comparison with constant gain control.

  • PDF

F/T측정 기능을 갖는 6축 순응장치를 이용한 힘제어 안정성 연구 (Study on the Stability of Force Control using a 6-axis Compliance Device with F/T Sensing)

  • 김기성;정성훈;김한성
    • 한국산업융합학회 논문집
    • /
    • 제26권1호
    • /
    • pp.211-215
    • /
    • 2023
  • In this paper, the stability and effectiveness of the force control with a 6-axis compliance device are verified by performing comparative experiments with a commercial F/T sensor. The position/force control algorithm based on the Cartesian stiffness of a compliance device is briefly introduced and the design result of a 6-axis compliance device with F/T sensing is presented. The comparative experiments show that the force control using a compliance device is much more stable than that with rigid F/T sensor due to the enough compliance of a compliance device larger than robot positional resolution.