To make a robust object tracking and identifying system for an intelligent robot and/or home system, heterogeneous sensor fusion between visible ray system and infrared ray system is proposed. The proposed system separates the object by combining the ROI (Region of Interest) estimated from two different images based on a heterogeneous sensor that consolidates the ordinary CCD camera and the IR (Infrared) camera. Human's body and face are detected in both images by using different algorithms, such as histogram, optical-flow, skin-color model and Haar model. Also the pose of human body is estimated from the result of body detection in IR image by using PCA algorithm along with AdaBoost algorithm. Then, the results from each detection algorithm are fused to extract the best detection result. To verify the heterogeneous sensor fusion system, few experiments were done in various environments. From the experimental results, the system seems to have good tracking and identification performance regardless of the environmental changes. The application area of the proposed system is not limited to robot or home system but the surveillance system and military system.
Tran, Hong Tai;Na, In Seop;Kim, Young Chul;Kim, Soo Hyung
스마트미디어저널
/
제6권3호
/
pp.49-56
/
2017
Images and Videos that include the human face contain a lot of information. Therefore, accurately extracting human face is a very important issue in the field of computer vision. However, in real life, human faces have various shapes and textures. To adapt to these variations, A model-based approach is one of the best ways in which unknown data can be represented by the model in which it is built. However, the model-based approach has its weaknesses when the motion between two frames is big, it can be either a sudden change of pose or moving with fast speed. In this paper, we propose an enhanced human face-tracking model. This approach included human face detection and motion estimation using Cascaded Convolutional Neural Networks, and continuous human face tracking and modeling correction steps using the Active Appearance Model. A proposed system detects human face in the first input frame and initializes the models. On later frames, Cascaded CNN face detection is used to estimate the target motion such as location or pose before applying the old model and fit new target.
통상의 얼굴인식은 사람이 똑바로 카메라를 응시해야 하거나, 혹은 이동하는 통로의 정면과 같이 특정 얼굴포즈를 취득할 수 있는 위치에 카메라를 설치하는 등 통제적인 환경에서 이루어진다. 이러한 제약은 사람에게 불편을 초래하고 얼굴인식의 적용 범위를 제한하는 문제가 있다. 본 논문은 이러한 기존방식의 한계를 극복하기 위하여 대상이 특별한 제약 없이 자유롭게 움직이더라도 동영상 내에서 대상의 얼굴을 추적하고 얼굴인식을 하는 방법을 제안한다. 먼저 동영상 속의 얼굴은 IVT(Incremental Visual Tracking) 추적기를 사용하여 지속적으로 추적이 되며 이때 얼굴의 크기변화와 기울기가 보상이 되어 추출이 된다. 추출된 얼굴영상은 사람과 카메라의 각도를 특정각도로 제한하지 않았으므로 다양한 포즈를 가지게 되며 따라서 얼굴인식을 하기 위해서 포즈에 대한 판정이 선행되어야 한다. 본 논문에서는 PCA(Principal Component Analysis)기반의 얼굴포즈판정방법을 사용하여 추적기에서 추출된 이미지가 5개 포즈별 DB속의 학습된 포즈와 유사한 것으로 판정될 때만 얼굴인식을 수행하여 인식률을 높이는 방법을 제안하였다. 얼굴인식에서는 PCA, 2DPCA, $(2D)^2PCA$의 인식알고리즘을 사용하여 얼굴인식률과 수행시간을 비교 제시하였다.
인간의 동작 인식에 대한 이전 연구는 주로 관절체로 표현된 신체 움직임을 추적하고 분류하는데 초점을 맞춰 왔다. 이 방식들은 실제 이미지 사용 환경에서 신체 부위에 대한 정확한 분류가 필요하다는 점이 까다롭기 때문에 최근의 동작 인식 연구 동향은 시공간상의 관심 점과 같이 저수준의, 더 추상적인 외형특징을 이용하는 방식이 일반화되었다. 하지만 몇 년 사이 자세 예측 기술이 발전하면서 자세 기반 방식에 대한 시각을 재정립하는 것이 필요하다. 본 연구는 외형 기반 방식에서 저수준의 외형특징만으로 분류기를 학습시키는 것이 충분한지에 대한 문제를 제기하면서 자세 예측을 이용한 효과적인 자세기반 동작인식 방식을 제안하였다. 이를 위해 다양한 감정을 표현하는 동작 시나리오를 대상으로 외형 기반, 자세 기반 특징 및 두 가지 특징을 조합한 방식을 비교하였다. 실험 결과, 자세 예측을 이용한 자세 기반 방식이 저수준의 외형특징을 이용한 방식보다 감정 동작 분류 및 인식 성능이 더 나았으며 잡음 때문에 심하게 망가진 이미지의 감정 동작 인식에도 자세 예측을 이용한 자세기반의 방식이 효과적이었다.
Human Pose Estimation (HPE) which localizes the human body joints becomes a high potential for high-level applications in the field of computer vision. The main challenges of HPE in real-time are occlusion, illumination change and diversity of pose appearance. The single RGB image is fed into HPE framework in order to reduce the computation cost by using depth-independent device such as a common camera, webcam, or phone cam. However, HPE based on the single RGB is not able to solve the above challenges due to inherent characteristics of color or texture. On the other hand, depth information which is fed into HPE framework and detects the human body parts in 3D coordinates can be usefully used to solve the above challenges. However, the depth information-based HPE requires the depth-dependent device which has space constraint and is cost consuming. Especially, the result of depth information-based HPE is less reliable due to the requirement of pose initialization and less stabilization of frame tracking. Therefore, this paper proposes a new method of HPE which is robust in estimating self-occlusion. There are many human parts which can be occluded by other body parts. However, this paper focuses only on head self-occlusion. The new method is a combination of the RGB image-based HPE framework and the depth information-based HPE framework. We evaluated the performance of the proposed method by COCO Object Keypoint Similarity library. By taking an advantage of RGB image-based HPE method and depth information-based HPE method, our HPE method based on RGB-D achieved the mAP of 0.903 and mAR of 0.938. It proved that our method outperforms the RGB-based HPE and the depth-based HPE.
본 논문에서는 실시간 증강현실 시스템에서의 가상 객체 삽입을 위한 빠르고 안정된 카메라 자세 추정 방법을 제안한다. 단일 프레임에서 마커의 특징점 추출을 통해 카메라의 회전행렬과 이동벡터를 추정한다. 카메라 자세 추정을 위해 정사영 투영모델에서의 분해기법을 사용한다. 정사영 투영모델에서의 분해기법은 객체의 모든 특징점의 깊이좌표가 동일하다고 가정하기 때문에 깊이좌표의 기준이 되는 참조점의 설정과 점의 분포에 따라 카메라 자세 계산의 정확도가 달라진다. 본 논문에서는 실제 환경에서 일반적으로 잘 동작하고 융통성 있는 참조점 설정 방법과 이상점 제거 방법을 제안한다. 제안된 카메라 자세추정 방법에 기반하여 탐색된 마커 위치에 가상객체를 삽입하기 위한 비디오 증강 시스템을 구현하였다. 실 환경에서의 다양한 비디오에 대한 실험 결과, 제안된 카메라 자세 추정 기법은 기존의 자세추정 기법만큼 빠르고 기존의 방법보다 안정적이고 다양한 증강현실 시스템 응용에 적용될 수 있음을 보여주었다.
A telerobot offers a more engaging and enjoyable interaction with people at a distance by communicating via audio, video, expressive gestures, body pose and proxemics. To provide its potential benefits at a reasonable cost, this paper presents a telepresence robot system for video communication which can deliver speaker's head motion through its display stanchion. Head gestures such as nodding and head-shaking can give crucial information during conversation. We also can assume a speaker's eye-gaze, which is known as one of the key non-verbal signals for interaction, from his/her head pose. In order to develop an efficient head tracking method, a 3D cylinder-like head model is employed and the Harris corner detector is combined with the Lucas-Kanade optical flow that is known to be suitable for extracting 3D motion information of the model. Especially, a skin color-based face detection algorithm is proposed to achieve robust performance upon variant directions while maintaining reasonable computational cost. The performance of the proposed head tracking algorithm is verified through the experiments using BU's standard data sets. A design of robot platform is also described as well as the design of supporting systems such as video transmission and robot control interfaces.
In this paper we concentrate on overall direction of the gaze based on a head pose for human computer interaction. To decide a gaze direction of user in a image, it is important to pick up facial feature exactly. For this, we binarize the input image and search two eyes and the mouth through the similarity of each block ( aspect ratio, size, and average gray value ) and geometric information of face at the binarized image. We create a imaginary plane on the line made by features of the real face and the pin hole of the camera to decide the head orientation. We call it the virtual facial plane. The position of a virtual facial plane is estimated through projected facial feature on the image plane. We find a gaze direction using the surface normal vector of the virtual facial plane. This study using popular PC camera will contribute practical usage of gaze tracking technology.
In this paper, we propose a fast and practical head pose estimation scheme fur eye-head controlled human computer interface with non-constrained background. The method we propose uses complete graph matching from thresholded images and the two blocks showing the greatest similarity are selected as eyes, we also locate mouth and nostrils in turn using the eye location information and size information. The average computing time of the image(360*240) is within 0.2(sec) and we employ template matching method using angles between facial features for head pose estimation. It has been tested on several sequential facial images with different illuminating conditions and varied head poses, It returned quite a satisfactory performance in both speed and accuracy.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권2호
/
pp.713-728
/
2021
This paper proposes an augmented reality technique to generate acrobatic scenes from hitting motion videos. After a user shoots a motion that mimics hitting an object with hands or feet, their pose is analyzed using motion tracking with deep learning to track hand or foot movement while hitting the object. Hitting position and time are then extracted to generate the object's moving trajectory using physics optimization and synchronized with the video. The proposed method can create videos for hitting objects with feet, e.g. soccer ball lifting; fists, e.g. tap ball, etc. and is suitable for augmented reality applications to include virtual objects.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.