• Title/Summary/Keyword: Pose accuracy

Search Result 207, Processing Time 0.022 seconds

Calibration for a Planar Cable-Driven Parallel Robot (평면형 병렬 케이블 구동 로봇에 대한 형상보정)

  • Jin, Xuejun;Jung, Jinwoo;Jun, Jong Pyo;Park, Sukho;Park, Jong-Oh;Ko, Seong Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1070-1075
    • /
    • 2015
  • This paper proposes a calibration algorithm for a three-degree-of-freedom (DOF) planar cable-driven parallel robot (CDPR). To evaluate the proposed algorithm, we calibrated winches and an optical tracking sensor, measured the end-effector pose using the optical tracking sensor, and calculated the accurate robot configuration using the measurement information. To conduct an accuracy test on the end-effector pose, we followed guidelines from "Manipulating industrial robots - Performance criteria and related test methods." Through the test, it is verified that the position accuracy can be improved by up to 20% for a $2m{\times}2m$-sized planar cable robot using the proposed calibration algorithm.

Flexible camera series network for deformation measurement of large scale structures

  • Yu, Qifeng;Guan, Banglei;Shang, Yang;Liu, Xiaolin;Li, Zhang
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.587-595
    • /
    • 2019
  • Deformation measurement of large scale structures, such as the ground beds of high-rise buildings, tunnels, bridge, and railways, are important for insuring service quality and safety. The pose-relay videometrics method and displacement-relay videometrics method have already presented to measure the pose of non-intervisible objects and vertical subsidence of unstable areas, respectively. Both methods combine the cameras and cooperative markers to form the camera series networks. Based on these two networks, we propose two novel videometrics methods with closed-loop camera series network for deformation measurement of large scale structures. The closed-loop camera series network offers "closed-loop constraints" for the camera series network: the deformation of the reference points observed by different measurement stations is identical. The closed-loop constraints improve the measurement accuracy using camera series network. Furthermore, multiple closed-loops and the flexible combination of camera series network are introduced to facilitate more complex deformation measurement tasks. Simulated results show that the closed-loop constraints can enhance the measurement accuracy of camera series network effectively.

A Fast Correspondence Matching for Iterative Closest Point Algorithm (ICP 계산속도 향상을 위한 빠른 Correspondence 매칭 방법)

  • Shin, Gunhee;Choi, Jaehee;Kim, Kwangki
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.373-380
    • /
    • 2022
  • This paper considers a method of fast correspondence matching for iterative closest point (ICP) algorithm. In robotics, the ICP algorithm and its variants have been widely used for pose estimation by finding the translation and rotation that best align two point clouds. In computational perspectives, the main difficulty is to find the correspondence point on the reference point cloud to each observed point. Jump-table-based correspondence matching is one of the methods for reducing computation time. This paper proposes a method that corrects errors in an existing jump-table-based correspondence matching algorithm. The criterion activating the use of jump-table is modified so that the correspondence matching can be applied to the situations, such as point-cloud registration problems with highly curved surfaces, for which the existing correspondence-matching method is non-applicable. For demonstration, both hardware and simulation experiments are performed. In a hardware experiment using Hokuyo-10LX LiDAR sensor, our new algorithm shows 100% correspondence matching accuracy and 88% decrease in computation time. Using the F1TENTH simulator, the proposed algorithm is tested for an autonomous driving scenario with 2D range-bearing point cloud data and also shows 100% correspondence matching accuracy.

Implementation of Yoga Posture Training Application Using Google ML Kit (Google ML Kit를 이용한 요가 자세 훈련 애플리케이션 구현)

  • Kim, Hyoung Min;Yoon, Jong Hyeon;Park, Su Hyun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.178-180
    • /
    • 2022
  • An application implementation that allows users to train yoga posture based on the landmark of yoga posture of yoga instructors obtained from the Google Firebase ML Kit was introduced. Using the ML Kit, the user's posture is classified and landmarks corresponding to each joint are obtained. The accuracy measurement reference value for the yoga posture is set through the angle formed by the joints of the obtained landmark. The accuracy between the reference landmark for the yoga posture of professional yoga instructors and the landmark for the user's pose through the ML Kit was compared. According to the accuracy reference value, information on malfunction and correct motion is provided to the user through Text-to-Speech (TTS). Users are managed effectively with Firebase, and a system that displays the amount of exercise through a counter and timer when the user performs an exercise that meets the accuracy reference value was explained.

  • PDF

A Study on the Improvement of Pose Information of Objects by Using Trinocular Vision System (Trinocular Vision System을 이용한 물체 자세정보 인식 향상방안)

  • Kim, Jong Hyeong;Jang, Kyoungjae;Kwon, Hyuk-dong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.223-229
    • /
    • 2017
  • Recently, robotic bin-picking tasks have drawn considerable attention, because flexibility is required in robotic assembly tasks. Generally, stereo camera systems have been used widely for robotic bin-picking, but these have two limitations: First, computational burden for solving correspondence problem on stereo images increases calculation time. Second, errors in image processing and camera calibration reduce accuracy. Moreover, the errors in robot kinematic parameters directly affect robot gripping. In this paper, we propose a method of correcting the bin-picking error by using trinocular vision system which consists of two stereo cameras andone hand-eye camera. First, the two stereo cameras, with wide viewing angle, measure object's pose roughly. Then, the 3rd hand-eye camera approaches the object, and corrects the previous measurement of the stereo camera system. Experimental results show usefulness of the proposed method.

Multi-Human Behavior Recognition Based on Improved Posture Estimation Model

  • Zhang, Ning;Park, Jin-Ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.659-666
    • /
    • 2021
  • With the continuous development of deep learning, human behavior recognition algorithms have achieved good results. However, in a multi-person recognition environment, the complex behavior environment poses a great challenge to the efficiency of recognition. To this end, this paper proposes a multi-person pose estimation model. First of all, the human detectors in the top-down framework mostly use the two-stage target detection model, which runs slow down. The single-stage YOLOv3 target detection model is used to effectively improve the running speed and the generalization of the model. Depth separable convolution, which further improves the speed of target detection and improves the model's ability to extract target proposed regions; Secondly, based on the feature pyramid network combined with context semantic information in the pose estimation model, the OHEM algorithm is used to solve difficult key point detection problems, and the accuracy of multi-person pose estimation is improved; Finally, the Euclidean distance is used to calculate the spatial distance between key points, to determine the similarity of postures in the frame, and to eliminate redundant postures.

Low-Cost IR Sensor-based Localization Using Accumulated Range Information (누적된 거리정보를 이용하는 저가 IR 센서 기반의 위치추정)

  • Choi, Yun-Kyu;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.845-850
    • /
    • 2009
  • Localization which estimates a robot's position and orientation in a given environment is very important for mobile robot navigation. Although low-cost sensors are preferred for practical service robots, they suffer from the inaccurate and insufficient range information. This paper proposes a novel approach to increasing the success rate of low-cost sensor-based localization. In this paper, both the previous and the current data obtained from the IR sensors are used for localization in order to utilize as much environment information as possible without increasing the number of sensors. The sensor model used in the monte carlo localization (MCL) is modified so that the accumulated range information may be used to increase the accuracy in estimating the current robot pose. The experimental results show that the proposed method can robustly estimate the robot's pose in indoor environments with several similar places.

Facial Feature Tracking and Head Orientation-based Gaze Tracking

  • Ko, Jong-Gook;Kim, Kyungnam;Park, Seung-Ho;Kim, Jin-Young;Kim, Ki-Jung;Kim, Jung-Nyo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.11-14
    • /
    • 2000
  • In this paper, we propose a fast and practical head pose estimation scheme fur eye-head controlled human computer interface with non-constrained background. The method we propose uses complete graph matching from thresholded images and the two blocks showing the greatest similarity are selected as eyes, we also locate mouth and nostrils in turn using the eye location information and size information. The average computing time of the image(360*240) is within 0.2(sec) and we employ template matching method using angles between facial features for head pose estimation. It has been tested on several sequential facial images with different illuminating conditions and varied head poses, It returned quite a satisfactory performance in both speed and accuracy.

  • PDF

Skeleton Model-Based Unsafe Behaviors Detection at a Construction Site Scaffold

  • Nguyen, Truong Linh;Tran, Si Van-Tien;Bao, Quy Lan;Lee, Doyeob;Oh, Myoungho;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.361-369
    • /
    • 2022
  • Unsafe actions and behaviors of workers cause most accidents at construction sites. Nowadays, occupational safety is a top priority at construction sites. However, this problem often requires money and effort from investors or construction owners. Therefore, decreasing the accidents rates of workers and saving monitoring costs for contractors is necessary at construction sites. This study proposes an unsafe behavior detection method based on a skeleton model to classify three common unsafe behaviors on the scaffold: climbing, jumping, and running. First, the OpenPose method is used to obtain the workers' key points. Second, all skeleton datasets are aggregated from the temporary size. Third, the key point dataset becomes the input of the action classification model. The method is effective, with an accuracy rate of 89.6% precision and 90.5% recall of unsafe actions correctly detected in the experiment.

  • PDF

Accuracy Analysis of 3D Posture Estimation Algorithm Using Humanoid Robot (휴머노이드 로봇을 이용한 3차원 자세 추정 알고리즘 정확도 분석)

  • Baek, Su-Jin;Kim, A-Hyeon;Jeong, Sang-Hyeon;Choi, Young-Lim;Kim, Jong-Wook
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.71-74
    • /
    • 2022
  • 본 논문은 최적화알고리즘을 이용한 관절각 기반 3차원 자세 추정 기법의 정확도를 휴머노이드 로봇을 이용하여 검증하는 방법을 제안한다. 구글의 자세 추정 오픈소스 패키지인 MPP(MediaPipe Pose)로 특정자세를 취한 휴머노이드 로봇의 관절 좌표를 카메라의 픽셀 좌표로 추출한다. 추출한 픽셀 좌표를 전역최적화 방법인 uDEAS(univariate Dynamic Encoding Algorithm for Searches)를 통해 시상면과 관상면에서의 각도를 추정하고 휴머노이드 로봇의 실제 관절 각도와 비교하여 알고리즘의 정확도를 검증하는 방법을 제시한다.

  • PDF