• 제목/요약/키워드: Pose Detection

검색결과 298건 처리시간 0.028초

Fast Convergence GRU Model for Sign Language Recognition

  • Subramanian, Barathi;Olimov, Bekhzod;Kim, Jeonghong
    • 한국멀티미디어학회논문지
    • /
    • 제25권9호
    • /
    • pp.1257-1265
    • /
    • 2022
  • Recognition of sign language is challenging due to the occlusion of hands, accuracy of hand gestures, and high computational costs. In recent years, deep learning techniques have made significant advances in this field. Although these methods are larger and more complex, they cannot manage long-term sequential data and lack the ability to capture useful information through efficient information processing with faster convergence. In order to overcome these challenges, we propose a word-level sign language recognition (SLR) system that combines a real-time human pose detection library with the minimized version of the gated recurrent unit (GRU) model. Each gate unit is optimized by discarding the depth-weighted reset gate in GRU cells and considering only current input. Furthermore, we use sigmoid rather than hyperbolic tangent activation in standard GRUs due to performance loss associated with the former in deeper networks. Experimental results demonstrate that our pose-based optimized GRU (Pose-OGRU) outperforms the standard GRU model in terms of prediction accuracy, convergency, and information processing capability.

Development of Pose-Invariant Face Recognition System for Mobile Robot Applications

  • Lee, Tai-Gun;Park, Sung-Kee;Kim, Mun-Sang;Park, Mig-Non
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.783-788
    • /
    • 2003
  • In this paper, we present a new approach to detect and recognize human face in the image from vision camera equipped on the mobile robot platform. Due to the mobility of camera platform, obtained facial image is small and pose-various. For this condition, new algorithm should cope with these constraints and can detect and recognize face in nearly real time. In detection step, ‘coarse to fine’ detection strategy is used. Firstly, region boundary including face is roughly located by dual ellipse templates of facial color and on this region, the locations of three main facial features- two eyes and mouth-are estimated. For this, simplified facial feature maps using characteristic chrominance are made out and candidate pixels are segmented as eye or mouth pixels group. These candidate facial features are verified whether the length and orientation of feature pairs are suitable for face geometry. In recognition step, pseudo-convex hull area of gray face image is defined which area includes feature triangle connecting two eyes and mouth. And random lattice line set are composed and laid on this convex hull area, and then 2D appearance of this area is represented. From these procedures, facial information of detected face is obtained and face DB images are similarly processed for each person class. Based on facial information of these areas, distance measure of match of lattice lines is calculated and face image is recognized using this measure as a classifier. This proposed detection and recognition algorithms overcome the constraints of previous approach [15], make real-time face detection and recognition possible, and guarantee the correct recognition irregardless of some pose variation of face. The usefulness at mobile robot application is demonstrated.

  • PDF

Invariant Range Image Multi-Pose Face Recognition Using Fuzzy c-Means

  • Phokharatkul, Pisit;Pansang, Seri
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1244-1248
    • /
    • 2005
  • In this paper, we propose fuzzy c-means (FCM) to solve recognition errors in invariant range image, multi-pose face recognition. Scale, center and pose error problems were solved using geometric transformation. Range image face data was digitized into range image data by using the laser range finder that does not depend on the ambient light source. Then, the digitized range image face data is used as a model to generate multi-pose data. Each pose data size was reduced by linear reduction into the database. The reduced range image face data was transformed to the gradient face model for facial feature image extraction and also for matching using the fuzzy membership adjusted by fuzzy c-means. The proposed method was tested using facial range images from 40 people with normal facial expressions. The output of the detection and recognition system has to be accurate to about 93 percent. Simultaneously, the system must be robust enough to overcome typical image-acquisition problems such as noise, vertical rotated face and range resolution.

  • PDF

Multi-Human Behavior Recognition Based on Improved Posture Estimation Model

  • Zhang, Ning;Park, Jin-Ho;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제24권5호
    • /
    • pp.659-666
    • /
    • 2021
  • With the continuous development of deep learning, human behavior recognition algorithms have achieved good results. However, in a multi-person recognition environment, the complex behavior environment poses a great challenge to the efficiency of recognition. To this end, this paper proposes a multi-person pose estimation model. First of all, the human detectors in the top-down framework mostly use the two-stage target detection model, which runs slow down. The single-stage YOLOv3 target detection model is used to effectively improve the running speed and the generalization of the model. Depth separable convolution, which further improves the speed of target detection and improves the model's ability to extract target proposed regions; Secondly, based on the feature pyramid network combined with context semantic information in the pose estimation model, the OHEM algorithm is used to solve difficult key point detection problems, and the accuracy of multi-person pose estimation is improved; Finally, the Euclidean distance is used to calculate the spatial distance between key points, to determine the similarity of postures in the frame, and to eliminate redundant postures.

A Distributed Real-time 3D Pose Estimation Framework based on Asynchronous Multiviews

  • Taemin, Hwang;Jieun, Kim;Minjoon, Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권2호
    • /
    • pp.559-575
    • /
    • 2023
  • 3D human pose estimation is widely applied in various fields, including action recognition, sports analysis, and human-computer interaction. 3D human pose estimation has achieved significant progress with the introduction of convolutional neural network (CNN). Recently, several researches have proposed the use of multiview approaches to avoid occlusions in single-view approaches. However, as the number of cameras increases, a 3D pose estimation system relying on a CNN may lack in computational resources. In addition, when a single host system uses multiple cameras, the data transition speed becomes inadequate owing to bandwidth limitations. To address this problem, we propose a distributed real-time 3D pose estimation framework based on asynchronous multiple cameras. The proposed framework comprises a central server and multiple edge devices. Each multiple-edge device estimates a 2D human pose from its view and sendsit to the central server. Subsequently, the central server synchronizes the received 2D human pose data based on the timestamps. Finally, the central server reconstructs a 3D human pose using geometrical triangulation. We demonstrate that the proposed framework increases the percentage of detected joints and successfully estimates 3D human poses in real-time.

잡음이 있는 3차원 점군 데이터에서 밸브 모델링 및 모델 추출 (Valve Modeling and Model Extraction on 3D Point Cloud data)

  • 오기원;최강선
    • 전자공학회논문지
    • /
    • 제52권12호
    • /
    • pp.77-86
    • /
    • 2015
  • LIDAR를 이용해서 얻은 3차원 점군 데이터는 작은 물체를 추출하기에는 오차의 영향이 크기 때문에 작은 밸브를 자동으로 추출하는데 많은 어려움이 있다. 본 논문에서는 이러한 잡음이 있는 3차원 점군 데이터 사이에서 밸브의 위치 및 방향(Pose)의 정보를 얻는 방법을 제안한다. Pose를 얻기 위해서 밸브가 원환체 모양의 손잡이, 원통 모양의 Rib, 평면 모양의 중심축 평면인 기본 도형으로 이루어진 모델이라고 가정한다. 그리고 밸브의 중심 좌표에 대한 추가적인 입력을 받아서 밸브의 Pose를 추출한다. 중심점을 기준으로 거리에 따른 히스토그램을 생성하고, 히스토그램의 값에 따라 손잡이, Rib, 중심축 평면의 파라미터를 통계적인 방법으로 추출하여 최종 밸브의 Pose를 추출한다. 추출된 밸브의 Pose를 이용하여 3차원 점군 데이터에 밸브의 모형을 각 모양으로 복원한다.

HigherHRNet 기반의 발추정 기법을 통한 횡단보도 보행자 인식 (Pedestrian Recognition of Crosswalks Using Foot Estimation Techniques Based on HigherHRNet)

  • 정경민;한주훈;이현
    • 대한임베디드공학회논문지
    • /
    • 제16권5호
    • /
    • pp.171-177
    • /
    • 2021
  • It is difficult to accurately extract features of pedestrian because the pedestrian is photographed at a crosswalk using a camera positioned higher than the pedestrian. In addition, it is more difficult to extract features when a part of the pedestrian's body is covered by an umbrella or parasol or when the pedestrian is holding an object. Representative methods to solve this problem include Object Detection, Instance Segmentation, and Pose Estimation. Among them, this study intends to use the Pose Estimation method. In particular, we intend to increase the recognition rate of pedestrians in crosswalks by maintaining the image resolution through HigherHRNet and applying the foot estimation technique. Finally, we show the superiority of the proposed method by applying and analyzing several data sets covered by body parts to the existing method and the proposed method.

모바일 머니퓰레이터의 작업을 위한 카메라 보정 및 포즈 추정 (Camera Calibration and Pose Estimation for Tasks of a Mobile Manipulator)

  • 최지훈;김해창;송재복
    • 로봇학회논문지
    • /
    • 제15권4호
    • /
    • pp.350-356
    • /
    • 2020
  • Workers have been replaced by mobile manipulators for factory automation in recent years. One of the typical tasks for automation is that a mobile manipulator moves to a target location and picks and places an object on the worktable. However, due to the pose estimation error of the mobile platform, the robot cannot reach the exact target position, which prevents the manipulator from being able to accurately pick and place the object on the worktable. In this study, we developed an automatic alignment system using a low-cost camera mounted on the end-effector of a collaborative robot. Camera calibration and pose estimation methods were also proposed for the automatic alignment system. This algorithm uses a markerboard composed of markers to calibrate the camera and then precisely estimate the camera pose. Experimental results demonstrate that the mobile manipulator can perform successful pick and place tasks on various conditions.

복잡한 배경의 칼라영상에서 Face and Facial Features 검출 (Detection of Face and Facial Features in Complex Background from Color Images)

  • 김영구;노진우;고한석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.69-72
    • /
    • 2002
  • Human face detection has many applications such as face recognition, face or facial feature tracking, pose estimation, and expression recognition. We present a new method for automatically segmentation and face detection in color images. Skin color alone is usually not sufficient to detect face, so we combine the color segmentation and shape analysis. The algorithm consists of two stages. First, skin color regions are segmented based on the chrominance component of the input image. Then regions with elliptical shape are selected as face hypotheses. They are certificated to searching for the facial features in their interior, Experimental results demonstrate successful detection over a wide variety of facial variations in scale, rotation, pose, lighting conditions.

  • PDF

실시간 3차원 얼굴 방향 식별 (Real Time Discrimination of 3 Dimensional Face Pose)

  • 김태우
    • 한국정보전자통신기술학회논문지
    • /
    • 제3권1호
    • /
    • pp.47-52
    • /
    • 2010
  • 본 논문에서는 능동적 적외선 조명을 이용한 3차원 얼굴 방향 식별을 위한 새로운 방법을 제안하고자 한다. 적외선 조명 하에서 밝게 나타나는 동공을 효과적으로 실시간 검출하여 추적할 수 있는 알고리즘을 제안한다. 다른 방향의 얼굴들에서 동공의 기하학적 왜곡을 탐지하여, 3차원 얼굴 방향과 동공의 기하학적 특성 사이의 관계를 나타낸 학습 데이터를 사용하여 고유한 눈 특징 공간을 구축하였고, 입력된 질의 영상에 대한 3차원 얼굴 방향을 고유한 눈 특징 공간을 사용하여 실시간으로 얼굴 방향을 측정할 수 있었다. 실험결과 카메라에 근접한 실험 대상자들에 대하여 최소 94.67%, 최고 100% 의 식별 결과를 나타내었다.

  • PDF