• 제목/요약/키워드: Portland cement concrete composite

검색결과 20건 처리시간 0.024초

도로 기층 재료로 활용하기 위한 섬유보강 빈배합 콘크리트에 플라이애시와 리젝트애시를 사용한 경우 역학적 특성 및 섬유 분산성 분석 (Evaluation of Mechanical Properties and Fiber Dispersing Characteristics of Fiber Reinforced Lean Concrete Using Fly Ash and Reject Ash)

  • 장영재;박철우;박영환;유평준;정우태;김용재
    • 한국도로학회논문집
    • /
    • 제15권1호
    • /
    • pp.11-21
    • /
    • 2013
  • PURPOSES: As pavement generally provides service shorter than an expected life cycle, maintenance cost increases gradually. In order to help extending the service life and reduce maintenance cost, a new multi-functional composite pavement system is being developed in Korea. METHODS: This study is a part to develop the multi-functional composite pavement and is to investigate the mechanical performances of fiber-reinforced lean concrete for pavement subbase. The inherent problem of fiber reinforced concrete is dispersion of fibers in concrete mix. This study additionally evaluated fiber dispersion characteristics with respect to different fiber types. RESULTS: From the test results, the compressive strengths of the concretes satisfied the required limit of 5MPa at 7days. The standard deviation of the measured number of fibers were lower in the order of nylon, steel fiber and polypropylene. CONCLUSIONS: Reject ash was shown to be satisfactory as a replacement material to Portland cement in lean concrete base. The fiber volume fraction is suggested to be 0.4% even though the fracture toughness did not vary significantly with respect to fiber types. However, fracture energy absorbed up to complete failure increased with the increased fiber volume fraction increment.

휨 하중을 받는 재생 PET 폴리머 콘크리트의 인장크리프 모델 (Tension Creep Model of Recycled PET Polymer Concrete with Flexural Loading)

  • 채영석;태기호
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.117-125
    • /
    • 2012
  • In recent years, polymer concrete based on polyester resin have been widely generalized and the research of polymer concrete have been actively pursued by the technical innovations. Polymer concrete is a composite consisting of aggregates and an organic resin binder that hardens by polymerization. Polymer concrete are stronger by a factor of three or more in compression, a factor of four to six in tension and flexural and a factor of two in impact when compared with portland cement concrete. In view of the growing use of polymer concrete, it is important to study the physical characteristics of the material, emphasizing the short term properties as well as long term mechanical behavior. If polymer concrete is to be used in flexural load-bearing application such as in beam, it is imperative to understand the deformation of the material under sustained loading conditions. This study is proposed to empirical and mechanical model of polymer concrete tension creep using long-term experimental results and mathematical development. The test results showed that proposed model has been used successfully to predict creep deformations at a stress level that was 20 percent of the ultimate strength and viscoelastic behavior of recycled-PET polymer concrete is linear of stress level up to 30 percent. It is expected that the present model allows more realistic evaluation of varying stresses in polymer concrete structures with a constant loading.

철근 보강된 콘크리트-ECC 복합보의 휨 거동 (Flexural Behavior of Concrete-ECC Composite Beam Reinforced with Steel Rebar)

  • 현정환;방진욱;이방연;김윤용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권3호
    • /
    • pp.104-111
    • /
    • 2020
  • 이 연구의 목적은 ECC를 적용한 RC 보 실험체의 휨 성능과 소성 힌지를 조사하는 것이다. ECC에는 1종 보통 포틀랜드 시멘트(OPC)를 결합재로 사용하였고, 플라이애시를 다량 혼입하여 결합재와 충전재 역할을 함과 동시에 균열폭 제어를 통한 다중 미세균열 확보하고자 하였다. 1축 인장성능 측정결과 최대 인장변형률은 3.0 % 확보하여 우수한 인장변형성능이 나타났다. ECC 치환길이에 따라 3가지 종류의 보를 제작하였다. ECC의 치환길이 변화에 따른 ECC-RC 보의 휨성능 실험 결과에서는 ECC의 적용으로 휨부재의 최대 내력과 연성이 동시에 증가하였다. 또한, ECC를 소성힌지부에 적용할 경우, 휨 부재의 곡률연성계수와 소성힌지 길이가 증가하는 것으로 나타났다.

콘크리트-폴리머 복합재료 개발(II) -폴리머(레진) 콘크리트의 물성- (Development of Concrete-Polymer Composite(II) -Physical Properties of Polymer(Resin) Concrete-)

  • 황의환;황택성;길덕수
    • 공업화학
    • /
    • 제10권7호
    • /
    • pp.1066-1072
    • /
    • 1999
  • 고기능성 건설재료로 활용하기 위하여 불포화폴리에스테르수지를 사용한 폴리머 콘크리트의 물성에 대하여 조사하였다. 탄산칼슘(충전제)의 첨가량(5~20 wt %)과 세골재의 첨가량(10~50 wt %)에 따라 다양한 배합의 공시체를 제작하여 압축 및 휨강도, 흡수시험, 내열수성시험, 내산성시험, 세공분포측정 및 SEM에 의한 미세조직 관찰등을 실시하였다. 그 결과 폴리머 콘크리트의 압축강도와 휨강도는 시멘트 콘크리트보다 4배 정도 향상되었고, 흡수율은 1/100로 감소되었으며, 내산성시험에 의한 중량감소율은 1/27로 현저히 감소되었다. 내열수성시험후에 측정한 폴리머 콘크리트의 압축 및 휨강도는 모두 내열수성시험전에 측정한 강도에 비하여 67%, 47%로 각각 감소되었으며 폴리머결합재의 분해에 의하여 세공량과 세공율은 크게 증가되었다.

  • PDF

방호·방폭 보강용 복합섬유 패널 제작을 위한 기초연구 (Basic Study on Fiber Composite Panel Production for Impact·Blast Resistant)

  • Kim, Woonhak;Kang, Seokwon;Yun, Seunggyu
    • 한국재난정보학회 논문집
    • /
    • 제11권2호
    • /
    • pp.235-243
    • /
    • 2015
  • 콘크리트 구조물의 방호 방폭성능을 향상시키기 위한 보강방법으로 배면보강이나 콘크리트 재료의 물성보강에 따른 방법과, 구조 부재나 지지물 등을 추가로 설치하여 저항성능을 향상시키는 방법 등을 고려하였을 때 경제적인 측면과 구조적인 측면에서 효율성이 떨어진다. 본 논문에서는 패널의 각 단층 구성 재료에 고인장, 경량화, 부착성능, 내화성능 등을 향상시켜 단층 각각의 개별적인 특수 성능과 복합패널 구성물로서의 방호방폭 성능을 극대화 할 수 있는 섬유복합패널 외피와 충전제로서 나노복합소재 및 접착제에 대한 기초 연구를 수행하였다. 그 결과 섬유복합패널 외피(아라미드-폴리에스터 비 6:4, 6.5:3.5)의 최대 인장강도 2,348MPa, 최대 신율 1.8%의 값을 얻었고, 나노복합소재와 접착제를 혼합한 충전제의 최대 인장전단접착강도 4MPa을 얻었다. 또한 나노복합소재로 제작한 충전제는 보통포틀랜드시멘트의 30%의 경량화의 결과를 얻었다.

The origins and evolution of cement hydration models

  • Xie, Tiantian;Biernacki, Joseph J.
    • Computers and Concrete
    • /
    • 제8권6호
    • /
    • pp.647-675
    • /
    • 2011
  • Our ability to predict hydration behavior is becoming increasingly relevant to the concrete community as modelers begin to link material performance to the dynamics of material properties and chemistry. At early ages, the properties of concrete are changing rapidly due to chemical transformations that affect mechanical, thermal and transport responses of the composite. At later ages, the resulting, nano-, micro-, meso- and macroscopic structure generated by hydration will control the life-cycle performance of the material in the field. Ultimately, creep, shrinkage, chemical and physical durability, and all manner of mechanical response are linked to hydration. As a way to enable the modeling community to better understand hydration, a review of hydration models is presented offering insights into their mathematical origins and relationships one-to-the-other. The quest for a universal model begins in the 1920's and continues to the present, and is marked by a number of critical milestones. Unfortunately, the origins and physical interpretation of many of the most commonly used models have been lost in their overuse and the trail of citations that vaguely lead to the original manuscripts. To help restore some organization, models were sorted into four categories based primarily on their mathematical and theoretical basis: (1) mass continuity-based, (2) nucleation-based, (3) particle ensembles, and (4) complex multi-physical and simulation environments. This review provides a concise catalogue of models and in most cases enough detail to derive their mathematical form. Furthermore, classes of models are unified by linking them to their theoretical origins, thereby making their derivations and physical interpretations more transparent. Models are also used to fit experimental data so that their characteristics and ability to predict hydration calorimetry curves can be compared. A sort of evolutionary tree showing the progression of models is given along with some insights into the nature of future work yet needed to develop the next generation of cement hydration models.

Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using non-contact measurement method

  • Grzegorz Ludwik Golewski
    • Advances in nano research
    • /
    • 제16권3호
    • /
    • pp.217-229
    • /
    • 2024
  • This paper presents results of visual analysis of cracks formation and propagation of concretes made of quaternary binders (QBC). A composition of the two most commonly used mineral additives, i.e. fly ash (FA) and silica fume (SF) in combination with nanosilica (nS), has been proposed as a partial replacement of the cement. The principal objective of the present study is to achieve information about the effect of simultaneous incorporation of three pozzolans as partial replacement to the OPC on the fracture processes in concretes made from quaternary binders (QBC). The modern and precise non-contact measurement method (NCMM) via digital image correlation (DIC) technique was used, during the studies. In the course of experiments it was established that the substitution of OPC with three pozzolans including the nanoadditive in FA+SF+nS FA+SF+nS combination causes a clear change of brittleness and behavior during fractures in QBCs. It was found that the shape of cracks in unmodified concrete was quasi-linear. Substitution of the binder by SCMs resulted in a slight heterogeneity of the structure of the QBC, including only SF and nS, and clear heterogeneity for concretes with the FA additive. In addition, as content of FA rises throughout each of QBC series, material becomes more ductile and shows less brittle failure. It means that an increase in the FA content in the concrete mix causes a significant change in fracture process in this composite in comparison to concrete with the addition of silica modifiers only.

고로슬래그 분말 및 석회석 분말이 시멘트 광물계 급결제를 사용한 숏크리트 결합재 물성에 미치는 영향 (The Effect of Addition of Blast-furnace Slag Powder and Limestone powder on Shotcrete Binder with Calcium Aluminate Accelerator)

  • 강봉희;김규용;최재원;구경모;황봉춘
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권2호
    • /
    • pp.86-93
    • /
    • 2020
  • 숏크리트용 콘크리트는 일반적으로 1종 보통 포틀랜드시멘트(이하 OPC)를 100% 사용한 레미콘 제품에 현장에서 별도로 숏크리트용 급결제를 약 5% 혼합하는 방식으로 사용된다. 본 연구에서는 국내에서 사용률이 높은 시멘트 광물계 급결제(calcium aluminate)를 사용한 숏크리트용 결합재로서 기존 OPC에 슬래그분말(이하 SP), 석회석분말(이하 LSP)를 첨가하여 혼합시멘트를 사용할 때의 응결 및 압축강도, 페이스트 수화물 및 공극구조에 미치는 영향을 시험 및 분석하여 재령별 수화물의 생성량과 공극구조가 숏크리트의 모르타르 성능에 미치는 영향을 파악하였다. 향후 숏크리트용 결합재로서 최적화된 결합재를 제조하는데 활용할 수 있을 것으로 기대된다.

Geopolymer concrete with high strength, workability and setting time using recycled steel wires and basalt powder

  • Ali Ihsan Celik;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • 제46권5호
    • /
    • pp.689-707
    • /
    • 2023
  • Geopolymer concrete production is interesting as it is an alternative to portland cement concrete. However, workability, setting time and strength expectations limit the sustainable application of geopolymer concrete in practice. This study aims to improve the production of geopolymer concrete to mitigate these drawbacks. The improvement in the workability and setting time were achieved with the additional use of NaOH solution whereas an increase in the strength was gained with the addition of recycled steel fibers from waste tires. In addition, the use of 25% basalt powder instead of fly ash and the addition of recycled steel fibers from waste tires improved its environmental feature. The samples with steel fiber ratios ranging between 0.5% and 5% and basalt powder of 25%, 50% and 75% were tested under both compressive and flexure forces. The compressive and flexural capacities were significantly enhanced by utilizing recycled steel fibers from waste tires. However, decreases in these capacities were detected as the basalt powder ratio increased. In general, as the waste wire ratio increased, the compressive strength gradually increased. While the compressive strength of the reference sample was 26 MPa, when the wire ratio was 5%, the compressive strength increased up to 53 MPa. With the addition of 75% basalt powder, the compressive strength decreases by 60%, but when the 3% wire ratio is reached, the compressive strength is obtained as in the reference sample. In the sample group to which 25% basalt powder was added, the flexural strength increased by 97% when the waste wire addition rate was 5%. In addition, while the energy absorption capacity was 0.66 kN in the reference sample, it increased to 12.33 kN with the addition of 5% wire. The production phase revealed that basalt powder and waste steel wire had a significant impact on the workability and setting time. Furthermore, SEM analyses were performed.

The influencing factors for the strength enhancement of composite materials made up of fine high-calcium fly ash

  • Olga M. Sharonova;Leonide A. Solovyov;Alexander G., Anshits
    • Advances in concrete construction
    • /
    • 제16권3호
    • /
    • pp.169-176
    • /
    • 2023
  • The aim of the study was to establish the influence of particle size, chemical and phase composition of fine microspherical high-calcium fly ash (HCFA), as well as superplasticizer content on the strength of cementless composite materials based on 100% HCFA and mixtures of HCFA with Portland cement (PC). For the initial HCFA fractions, the particle size distribution, chemical and quantitative phase composition were determined. The compressive strength of cured composite materials obtained at W/B 0.4 and 0.25 was determined at a curing time of 3-300 days. For cementless materials, it was found that a change in the particle size d90 from 30 ㎛ (fraction 3) to 10 ㎛ (fraction 4) leads to an increase in compressive strength by more than 2 times. Compressive strength increases by at least another 2.2 times with the addition of Melflux 5581F superplasticizer (0.12%) and at W/B 0.25. The HCFA-PC blends were investigated in the range of 60-90% HCFA and the maximum compressive strength was found at 80% HCFA. On the basis of 80% HCFA-20% PC blend, the samples of ultra-high strength (108 and 150 MPa at 28 and 100 days of hardening) were obtained with the addition of 0.3% Melflux 5581F and 5% silica fume. The quantitative phase composition was determined for composite materials with a curing age of 28 days. It has been established that in a sample with ultra-high strength, a more complete transformation of the initial phases of both HCFA and PC occurs as compared to their transformation separately.