• Title/Summary/Keyword: Portable environment monitoring system

Search Result 35, Processing Time 0.034 seconds

Development of Portable Atmospheric Environment Measurement System using Low Power Wireless Communication

  • Chae, Soohyeon;Kim, Hack-Yoon;Gim, Jangwon
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.99-109
    • /
    • 2020
  • As environmental pollution has become severe due to the rapid increase in pollutant generation in the air, measurement, collection, and analysis of atmospheric environment information plays an important role. However, it is difficult to measure the high-resolution and real-time atmospheric environment of the cities and tourist spots with high population mobility only by measuring equipment of stationary measuring stations. Therefore, this paper proposes a portable atmospheric environment measurement system for real-time measurement and monitoring of atmospheric environment information. The proposed system is a portable client with a low-power wireless communication method. It is possible to reliably transmit and receive the measured data through a multi-threaded server to monitor the trend of pollutants in the air in real-time.

Portable ECG Sensor Module and Monitoring System Implementation Considering Reduction of Powerline Noise and Baseline Wander (전원잡음과 기저선변동을 고려한 이동형 ECG 센서모듈 및 모니터링 시스템 구현)

  • Oh Do-Chang;Choi Dong-Hyuk;Lee Hong-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1022-1028
    • /
    • 2006
  • A portable ECG sensor module and monitoring system which has the powerline noise reduction and the baseline wander removal is proposed. A small-szie ECG sensor H/W module with the 8-bits microprocessor is implemented. The ECG waveform can be inspected anytime with PDA in real time, and transmitted to the PC through wireless LAN. Portable ECG system can offer the environment that give the lasting medical service to the elderly and the long-time hospitalized patients at the wanted place, and the system can be attached to the chair, wheel chair, treadmill, elderly walker and used to monitor the health condition of man

Implementation of a ECG monitoring system and portable pulse oximeter for $SpO_2$ using Compact Flash Interface (컴팩트 플래쉬 방식의 휴대형 산소포화도 측정 및 ECG 감시 시스템의 구현)

  • Kim, Dong-Hak;Kim, Young-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.19-22
    • /
    • 2002
  • In this paper, we aims to develop a microcontroll er-based ECG monitoring system and portable pulse oximeter using Compact Flash Interface. First, portable pulse oximeter system is designed to record 2 channel of biosignals simultaneously, including 1 channel of $SpO_2$ and 1 channel of pulse rate. It is very small and portable. Besides, the system makes it possible to measure a patient's condition without an additional medical equipment. We tried to solve the problems generated by a patient's motion. That is, we added an analog circuit to a traditional pulse oximeter in order to eliminate the change of the base line. And we used 2D sector algorithm. As present, SpO2 modules are completed. But there are still many further development needed in order to enhance the function. Especially, compact falsh interface remains the most to complete. Second, ECG monitoring system uses almost same as present 3-lead ECG system. But we focus on the analog part, especially in filter. The proposed filter is composed of two parts. One is a filter to remove the power-line interface. The other is a filter to remove the baseline drift. A filter to remove the power-line and the baseline drift is necessarily used in the ECG system. The implemented filter have three features; minimizing the distortion in DC component, removing the harmonic component of power-line frequency. Using compact flash interface, we can easily transfer a patient's personal information and the measured signal data to a network based server environment. That means, it is possible to implement a patient's monitoring system with low cost.

  • PDF

FIELD EXPERIENCE OF PORTABLE SMPS+C NANO PARTICLE SIZER

  • Gerhart, Ch.;Grimm, H.J.;Heim, M.
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.47-48
    • /
    • 2003
  • This new family of portable real time SEQUENTIAL MOBILITY PARTICLE COUNTER and SIZER (SMPS+C) is designed for mobility and easy field use. An integrated battery assures hours of operation, a data logger system storage of all optioned results and a user friendly powerful software easy operation. This technology not only simplifies the SMPS operation, but it permits new on site application monitoring up to a remote wireless telephone operation. (omitted)

  • PDF

Design of Fine Dust Monitoring System based on the Internet of Things (사물인터넷 기반 미세먼지 모니터링 시스템 설계 및 구현)

  • Kim, Tae-Yeun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.14-26
    • /
    • 2022
  • Recently, according to the severity of air pollution, interest in air pollution is increasing. The IoT based fine dust monitoring system proposed in this paper allows the measurement and monitoring of fine dust, volatile organic compounds, carbon dioxide, etc., which are the biggest causes affecting the human body among air environmental pollution. The proposed system consisted of a device that measures atmospheric environment information, a server system for storing and analyzing measured information, an integrated monitoring management system for administrators and smart phone applications for users to enable visualization analysis of atmospheric environment information in real time. In addition, the effectiveness of the proposed fine dust monitoring system based on the Internet of Things was verified by using the response speed of the system, the transmission speed of the sensor data, and the measurement error of the sensor. The fine dust monitoring system based on the Internet of Things proposed in this paper is expected to increase user convenience and efficiency of the system by visualizing the air pollution condition after measuring the air environment information with portable fine dust measuring device.

The Development of VOC Measurement System Uging PCA & ANN (PCA와 ANN을 이용한 VOC 측정기기 개발)

  • Lee Jang-Hoon;Kwon Hyuk-Ku;Park Seung Ho;Kim Dong-Jin;Hong Chol-Ho
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.2
    • /
    • pp.161-167
    • /
    • 2004
  • Air quality monitoring is a primary activity for industrial and social environment. The government identifies the pollutants that each industry must monitor. Especially, the VOCs (Volatile Organic Compounds), which are very harmful to human body and environment atmosphere, should be controlled under the government policy. However, the VOCs, which have not been confirmed in emission sources are very difficult to monitor. It is needed to develop the monitoring system that allow the continuous and in situ measurement of VOCs mixture in different environmental matrices. Gas chromatography and mass spectrometry are the most prevalent current techniques among those available for the analysis of VOCs. But, they need a large size analytical instrument, which costs a great deal for purchase and operation. In addition, it has some limitations for realtime environmental monitoring such as location problems and slow processing time. Recently, several companies have commercialized a portable VOCs measurement systems, which cannot classify various kinds of VOCs but total quantities. We have developed a VOCs measurement system, which recognizes various kinds and quantities of VOCs, such as benzene, toluene, and xylene (BTX). Also, it can be used as a stand- alone type and/or fixed type in the vehicle with rack for real -time environmental monitoring.

Development of a Portable SpO2-based Biosignal Monitoring System (SpO2 기반 휴대형 생체 신호 모니터링 시스템 개발)

  • Lee, Hyung-Bong;Park, Sung-Wook;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.5
    • /
    • pp.273-283
    • /
    • 2013
  • The traditional medical equipments are devices used by medical professionals but not used in public environment. Common people, however, require light-weight medical devices to make healthcare for themselves nowadays. Those medical devices are used to monitor personal health status such as blood pulse, blood pressure, diabetes. Also, some of them are operated in mobile environment called u-healthcare. This paper implements a portable healthcare system composed of $SpO_2$(Saturation of Partial Pressure Oxygen) sensors and a gateway for detecting hypoxemia during people's leasure activity such as climbing or hiking. The $SpO_2$ sensor is designed as watch style to support dynamic exercise and the gateway is designed as necklace style to support the elderly. The result of a performance evaluation shows that the performance of the $SpO_2$ sensor using reflection technology is not lower than that of a clairvoyant styled $SpO_2$ sensor.

Experimental Performance Validation of an Unmanned Surface Vessel System for Wide-Area Sensing and Monitoring of Hazardous and Noxious Substances (HNS 광역 탐지 및 모니터링을 위한 부유식 무인이동체 시스템의 실험적 성능 검증)

  • Jinwook Park;Jinsik Kim;Jinwhan Kim;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.11-17
    • /
    • 2022
  • In this study, we address the development of a floating platform system based on a unmanned surface vessel for wide-area sensing and monitoring of hazardous and noxious substances (HNSs). For long endurance, a movable floating platform with no mooring lines was used and modified for HNS sensing and monitoring. The floating platform was equipped with various sensors such as optical and thermal imaging cameras, marine radar, and sensors for detecting HNSs in water and air. Additionally, for experiment validation in real outdoor environments, a portable gas-exposure system (PGS) was built and installed on the monitoring system. The software for carrying out the mission was integrated with the Robot Operating System (ROS) framework. The practical feasibility of the developed system was verified through experimental tests conducted in inland water and real-sea environments.

Implementation of a portable pulse oximeter for SpO2 using Compact Flash Interface (컴팩트 플래쉬 방식의 휴대용 산소포화도 측정 시스템 구현)

  • Lee, Han;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.678-681
    • /
    • 2003
  • In this paper, we aims to develop a microcontroll er-based portable pulse oximeter using Compact Flash Interface. First, portable pulse oxineter system is designed to record 2 channel of biosignals simultaneously, including 1 channel of SpO$_2$ and 1 channel of pulse rate. It is very small and portable. Besides, the system makes it possible to measure a patients condition without an additional medical equipment. We tried to solve the problems generated by a patient's motion. That is, we added an analog circuit to a traditional pulse oximeter in order to eliminate the change of the base line. And we used 2D sector algorithm. As present, SpO$_2$ modules are completed. But there are still many further development needed in order to enhance the function. Especially, compact flash interface remains the most to complete. Second, ECG monitoring system uses almost same as present 3-lead ECG system. But we focus on the analog part, especially in filter. The proposed filter is composed of two parts. One is a filter to remove the power-line interface. The other is a filter to remove the baseline drift. A filter to remove the power-line and the baseline drift is necessarily used in the ECG system. The implemented filter have three features; minimizing the distortion in DC component, removing the harmonic component of power-line frequency. Using compact flash interface, we can easily transfer a patient's personal information and the measured signal data to a network based server environment. That means, it is possible to implement a patient's monitoring system with low cost.

  • PDF

An Analysis of Future Ship Operation System under the e-navigation Environment

  • An, Kwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.259-265
    • /
    • 2015
  • It is clearly understood that e-navigation is beneficial to prevent collision and grounding of ships. The purpose of this study is to define and present a future ship operation system under the e-navigation environment in order to provide clear direction for the design of Korean e-navigation system. The future ship operation system consists of shipboard navigational system, shore supporting system and maritime communication system. To achieve the objectives of this study, the ship operation system was discussed separately into SOLAS ships and non-SOLAS ships in this study. In SOLAS ships, mariners become a system manager, choosing system presets, interpreting system output, and monitoring vessel response. In small ships and fishing vessels, mariners may enjoy their navigation by using the automatic tracking of ship's position on the portable electronic chart display. The improved bridge design, integrated and harmonized navigational system and single window reporting will reduce significantly the administrative and physical workload of mariners. Mariners can concentrate their attention more on navigational duty under the e-navigation environment. To build an effective Korean e-navigation system, the essential navigational functions and e-navigation services for small ships and fishing vessels must be identified and developed taking into account user needs.