• Title/Summary/Keyword: Portable XRF

Search Result 24, Processing Time 0.017 seconds

Analysis of the hazardous RoHS materials in polyethylene and polypropylene samples by bench-top and portable XRF methods (탁상형 및 휴대형 X-선 형광 분석기를 이용한 폴리에틸렌 및 폴리프로필렌 시료 중 RoHS 규제 물질의 비교 분석)

  • Choi, Soo-Jung;Kim, Chong-Hyeak;Lee, Sueg-Geun;Kang, In-Sung
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.74-82
    • /
    • 2010
  • As a basic research for development of the domestic portable XRF spectrometer, we discussed the analytical results of bench-top and portable XRF methods for RoHS materials of the Cd, Pb, Hg, Cr(IV), polybrominated biphenyls(PBB) and polybrominated diphenyl ehters(PBDE). The instrumental parameters such as measurement time of bench-top and portable XRF were optimized using certified reference materials of polyethylene and polypropylene with 5 hazardous materials of 0~1,200 mg/kg. The quantitative analysis of total-Cr, total-Br, Cd, Hg and Pb in certified reference materials and plastic samples were compared by empirical method, fundamental parameter method of bench-top XRF and portable XRF.

Comparison of the Heavy Metal Analysis in Soil Samples by Bench-Top ED-XRF and Field-Portable XRF (Bench-Top ED-XRF 및 휴대용 XRF를 이용한 토양 시료 중의 중금속 비교 분석)

  • Choi, Soo-Jung;Kim, Chong-Hyeak;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.293-301
    • /
    • 2009
  • As a basic research for development of the domestic field-portable XRF spectrometer, we discussed the analytical results of bench-top ED-XRF and field-portable XRF method for polluted heavy metals such as Cr, As, Se, Hg, Pb, Cd in soil samples. To obtain the best performance of the XRF spectrometer, the instrumental parameters of X-ray tube-voltage and measurement time were optimized for 6 heavy-metal elements in soil using certified reference material. The quantitative analysis of Cr, As, Se, Hg, Pb, Cd concentration in certified reference materials and soil samples were compared by empirical method and fundamental parameter method.

Evaluation of Lead levels in Airborne by a portable X-Ray Fluorescence Instrument (휴대용 X-Ray 형광기기(XRF)를 이용한 공기중 납농도 평가)

  • Ahn, Kyu Dong;Lee, Jong Chun;Cho, Kwang Sung;Kim, Nam Su;Kim, Jin Ho;Lee, Sung Soo;Lee, Byung Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.3
    • /
    • pp.235-240
    • /
    • 2001
  • This study was performed to compare the lead levels of 20 quality control standard samples(KOSHA:18-2000) and 72 field samples in lead-acid battery manufacturing plant between ICP and portable-XRF methods. 1. While the proficiencies of 20 quality control standard samples by ICP were 100%, those of analytic result values by XRF were 75%. 2. The correlation coefficient(r) between the reference values for quality control (REF) and the analytic result values by ICP (ICP) was 1.0(p<0.05), and simple linear regression equation and the coefficient(R2) were REF = -0.0009 + 1.016 ICP and 0.9997, respectively. 3. The correlation coefficient(r) between the analytic result values of quality control standard samples by ICP (ICP) and by XRF (XRF) was 0.975(p<0.05), and simple linear regression equation and the coefficient(R2) were ICP = -0.0003 + 1.002 XRF and 0.950, respectively. 4. The correlation coefficient(r) between the analytic result values for lead samples of a lead-acid battery manufacturing plant by ICP (ICP) and by XRF (XRF) was 0.993(p<0.05), and simple linear regression equation and the coefficient(R2) were ICP = -2.058 + 0.996 XRF and 0.987, respectively. 5. While the frequency distributions of XRF /ICP(Ratio) for each ICP concentration levels in a lead-acid battery manufacturing plant revealed high proportion in ratio range of 0.876-1.125 than in ration range of 1.126-1.375. Also, ICP concentration level in ration range of 0.786-1.125 was increased with increase of frequency distribution of XRF/ICP. 6. The limit of detection of XRF on lead was determined to be $6.11{\mu}g$/filter The data presented in this study indicated that relationship for lead level of quality control samples and field samples in a lead -acid battery manufacturing plant by ICP and portable-XRF methods was proved. The practicing industrial hygienist can use portable-XRF to produce a rapid on-site determination of lead exposure that can immediately becommunicated to workers and help identify appropriate levels of personal protection.

  • PDF

Comparison study of the wear metal analysis in oil sample by portable and bench-top XRF (휴대용 및 Bench-Top X-선 형광 분석기를 이용한 오일 시료 중 마찰 금속의 비교 분석)

  • Choi, Soo-Jung;Kim, Chong-Hyeak;Lee, Sueg-Geun;Kim, Dong-Pyo
    • Analytical Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.422-431
    • /
    • 2009
  • The analytical results of wear metals such as Na, Mg, Al, Si, P, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Ag, Cd, Sn, Ba, Pb in oil samples are compared by portable and bench-top XRF methods as a basic study for the development of portable X-ray fluorescence spectrometer. The instrumental parameters such as measurement time of portable and bench-top XRF were optimized using certified reference materials of hydrocarbon oil with 20 wear metals in concentration range from 10 to 900 mg/kg. The analytical results of 20 wear metals in certified reference materials and new/used engine oil samples were compared by empirical and fundamental parameter methods.

Measurement of Heavy Metals Using Portable XRF in Children's Playing Goods (Portable XRF를 이용한 어린이 야외 놀이용품의 중금속 측정)

  • Kim, Hyung-Jin;Baek, Young Man;Jung, Kyung Hoon;Hong, Suk Youn;Heo, Hwa Jin;Seong, Jin Uk;Park, Je Chul
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.471-479
    • /
    • 2013
  • The present study was conducted to judge the applicability of field quality control by children's goods manufacturers by assessing the contents of heavy metals such as Pb and Cd in outdoor play goods for children through measurement using Portable XRF and comparing the results through detailed analyses using ICP. Heavy metal contents of 711 part samples of 505 products were measured using XRF. According to the results, the ratio of products that exceeded the Pb and Cd content standards specified under the Quality Management and Safety Control of Industrial Products Act were 2.4% and 2.6%. Many products certified for self-regulated safety exceeded the standards and thus it was considered that harmful chemical material centered safety management systems would be necessary. Detailed ICP analyses of some products were compared and the results showed deviations of 0.9~80.8% from XRF results. The reasons for this are deviations in the characteristics of measured cross sections and the homogeneity of samples resulting from sample preparation methods, etc. Therefore, it is considered that field quality control will be applicable if measuring methods are efficiently established based on product characteristics and calibration curve preparation methods are established through quality control.

A Study on the Quantitative Analysis of Portable XRF for the Components Analysis of Metal Cultural Heritage (금속문화재 성분분석을 위한 휴대용 XRF 정량분석법 연구)

  • Lim, So-Mang;Kwon, Young-Suk;Cho, Young-Rae;Chung, Won-Sub
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.451-463
    • /
    • 2021
  • In this study we conducted component analyses of portable XRF detectors using four Au-Cu alloy standard samples to improve their accuracy by drawing up a calibration curve based on ICP-OES standard values. The portable XRF analysis found absolute errors of 0.3 to 3.7 wt% for Au and 0.2 to 8.2 wt% for Cu, confirming that the error range and standard deviation differed from one detector to another. Furthermore, the calibration curve improved their accuracy, such that the relative error rates of Au and Cu decreased from 9.8% and 14% to 3.5% and 3.7%, respectively. Accordingly, an experiment to confirm the calibration curve was conducted using unknown samples, finding that the measured values of the unknown samples fell on the calibration curve. Therefore, to accurately analyze the components of metal cultural heritage items, it is necessary to prepare a calibration curve for each element after checking whether the detector is suitable for the artifact.

Spatial Pedological Mapping Using a Portable X-Ray Fluorescence Spectrometer at the Tallavera Grove Vineyard, Hunter Valley

  • Jang, Ho-Jun;Minasny, Budiman;Stockmann, Uta;Malone, Brendan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.635-643
    • /
    • 2016
  • Wine consumers desire to drink a high quality wine. For producing high quality wine, high quality soil is required. Conventionally, soil quality is assessed qualitatively. Using traditional laboratory methods, quantitative data can be obtained for management purpose, but it is time consuming and expensive. Therefore, new technology aims to address these limitations, namely portable X-Ray fluorescence spectrometers (pXRF). This instrument can be used directly in the field, requires no soil sample preparations, and can simultaneously measure a wide range of elements qualitatively that are useful for pedological studies. The chemical composition (Ca, Fe, Ti and Zr) of soils at Tallavera Grove vineyard in New South Wales, Australia, was studied using a pXRF. The analysis of the soil's elemental concentration (i.e. Ca and Fe) using pXRF supports management decisions. Measuring the soil's Ca concentration can be used to identify Ca-rich parent materials (limestone). The limestone indicates good soil conditions for vine production. Fe content was used to identify areas of texture-contrast soils or soil with accumulation of clays in the B horizon. In addition, a soil weathering index was calculated using elemental concentrations (i.e. Ti and Zr) to explore the history of soil formation for making decision of management. This index showed that the soil in the vineyard was affected by two processes: the deposition of materials from elsewhere (Aeolian transport or soil erosion) and mixing of materials from upslope.

Element Dispersion and Wallrock Alteration Analysis Using Portable XRF and SWIR in the Samgwang Au Deposit (휴대용 XRF와 단파장적외선 분광분석을 이용한 삼광 금광상의 원소분산 및 모암변질 분석)

  • Kim, Junkyum;Shin, Dongbok;Yoo, Bongchul;Im, Heonkyung;Kim, Ilkyu
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.259-274
    • /
    • 2019
  • Using portable XRF and SWIR analyzer, the characteristics of element dispersion and wallrock alterations induced by interaction between hydrothermal fluids and host rocks were investigated and ore exploration factors were estimated for the orogenic-type Samgwang Au deposits. On this purpose, in-situ measurements were conducted for 804 spots at regular intervals with a total of 4,824 times for host rocks, consisting of schist and gneiss, and altered wallrocks contacted with quartz veins in the Bonhang adit of the deposit, and the results were compared with quantitative data obtained by XRF and ICP analysis. The regression coefficients are 0.88 for major elements and 0.56 for trace elements, excluding V. For polished rock slabs, better results came out for major elements, 0.97 and for trace elements, 0.65. In altered wallrocks contacted with quartz veins, elements such as Fe, Zn, and Rb exhibit positive correlations with As in concentrations, while V forms a negative trend. Contour maps demonstrate that As, Zn, Rb, Fe, Ti, Cr, and Ni are enriched together near quartz veins, showing similar elemental behaviors. In-situ analysis using portable SWIR analyzer represents that schist and gneiss contain mica, illite, chlorite, sericite, amphibole, and epidote, while illite, sericite, gypsum, and mica are present in the altered rocks contacted with quartz veins. In contour maps, chlorite occurs mostly in host rocks, while sericite is concentrated near quartz veins. These results are similar to those of previous studies for element dispersion and hydrothermal alteration, and support the possibility for application of in-situ analysis on the exploration of orogenic gold deposit.

Study of Drinking water pipeline Corrosion Mechanism by using Scale Analysis (부식 생성물 분석법을 이용한 상수도 금속관의 부식거동에 관한 연구)

  • 황상용;송호봉
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.57-62
    • /
    • 2002
  • Carbon cast iron and Zinc coated steel were the most widely used portable water of supply and distribution Pipeline system. The leaching of red water in portable water could produce sericus environmental sanitary problems. Due to the red water was the most alternative to inner scale of metal pipeline. So this study was conducted the impact of red water on scale products, and was evaluated by the corrosive metal contaminants of 20 fears over. Surface tests, metal surface composition measurements of samples XRF, XRD, and SEM(EDS), analysis were used to investigate the corrosion characteristies of carbon cast iron and Zinc coated steel. As the contaminants of Fe increased the red water of carbon castiron pipe increased due to the scale products amount of $Fe_2O_3$ (Hemite).

A Preliminary Study on the Fire Safety Testing Method for Fire-resistance Paints Using an X-ray Analysis Method (X-선 분석법을 이용한 내화도료의 화재안전성 평가 방법에 관한 기초연구)

  • Shim, Ji-Hun;Cho, Nam-Wook;Kim, Kang-Woo
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.58-63
    • /
    • 2014
  • Fire-resistance paints are supposed to become intumescent and diminish heat transfer along the steel frames in case of a fire. If unsatisfactory fire-resistance paints which do not satisfy their standard specification are used, it may result in a severe disaster. Because satisfactory fire-resistance paints are hardly discriminated from the unsatisfactory ones by a simple visual inspection, more reliable and convenient onsite evaluation methods are necessary. Here we report the preliminary study result on the fire safety testing method for fire-resistance paints using an X-ray analysis method. It was found that the existence and quantity of effective constituents in fire-resistance paints can be detected by the X-ray analysis method. X-ray fluorescence (XRF) analyses showed that P and Cl elements are much more enriched in fire-resistance paints, compared to normal paints. X-ray diffraction (XRD) analyses showed that ammonium polyphosphate is present as the main crystalline material in fire-resistance paints, but absent in normal paints. The X-ray analysis method is expected to be used for the onsite inspection of fire-resistance paints with the upcoming availability of portable XRF and XRD instruments.