• Title/Summary/Keyword: Port Manipulation

Search Result 4, Processing Time 0.018 seconds

Inundation Map at Imwon Port with Past and Virtual Tsunamis (과거 및 가상 지진해일에 의한 임원항의 침수예상도)

  • Kim, Tae-Rim;Cho, He-Rin;Cho, Yong-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • The scale of disaster and damage witnessed in the 2004 Indian Ocean Tsunami and the 2011 Great East Japan Tsunami has motivated researchers in developing foolproof disaster mitigation techniques for safety of coastal communities. This study focuses on developing tsunami hazard map by numerical modeling at Imwon Port to minimize losses of human beings and property damage when a real tsunami event occurs. A hazard map is developed based on inundation maps obtained by numerical modeling of 3 past and 11 virtual tsunami cases. The linear shallow-water equations with manipulation of frequency dispersion and the non-linear shallow-water equations are employed to obtain inundation maps. The inundation map gives the maximum extent of expected flooded area and corresponding inundation depths which helps in identifying vulnerable areas for unexpected tsunami attacks. The information can be used for planning and developing safety zones and evacuation structures to minimize damage in case of real tsunami events.

Study on Direct Teaching Algorithm for Remote Center Motion of Surgical Assistant Robot using Force/Torque Sensor (힘/토크 센서를 이용한 수술보조로봇의 원격중심운동 직접교시 알고리즘 연구)

  • Kim, Minhyo;Jin, Sangrok
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.309-315
    • /
    • 2020
  • This study shows a control strategy that acquires both precision and manipulation sensitivity of remote center motion with manual traction for a surgical assistant robot. Remote center motion is an essential function of a laparoscopic surgical robot. The robot has to keep the position of the insertion port in a three-dimensional space, and general laparoscopic surgery needs 4-DoF (degree-of-freedom) motions such as pan, tilt, spin, and forward/backward. The proposed robot consists of a 6-axis collaborative robot and a 2-DoF end-effector. A 6-axis collaborative robot performs the cone-shaped trajectory with pan and tilt motion of an end-effector maintaining the position of remote center. An end-effector deals with the remaining 2-DoF movement. The most intuitive way a surgeon manipulates a robot is through direct teaching. Since the accuracy of maintaining the remote center position is important, direct teaching is implemented based on position control in this study. A force/torque sensor which is attached to between robot and end-effector estimates the surgeon's intention and generates the command of motion. The predefined remote center position and the pan and tilt angles generated from direct teaching are input as a command for position control. The command generation algorithm determines the direct teaching sensitivity. Required torque for direct teaching and accuracy of remote center motion are analyzed by experiments of panning and tilting motion.

Counting People Walking Through Doorway using Easy-to-Install IR Infrared Sensors (설치가 간편한 IR 적외선 센서를 활용한 출입문 유동인구 계측 방법)

  • Oppokhonov, Shokirkhon;Lee, Jae-Hyun;Jung, Jae-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.35-40
    • /
    • 2021
  • People counting data is crucial for most business owners, since they can derive meaningful information about customers movement within their businesses. For example, owners of the supermarkets can increase or decrease the number of checkouts counters depending on number of occupants. Also, it has many applications in smart buildings, too. Where it can be used as a smart controller to control heating and cooling systems depending on a number of occupants in each room. There are advanced technologies like camera-based people counting system, which can give more accurate counting result. But they are expensive, hard to deploy and privacy invasive. In this paper, we propose a method and a hardware sensor for counting people passing through a passage or an entrance using IR Infrared sensors. Proposed sensor operates at low voltage, so low power consumption ensure long duration on batteries. Moreover, we propose a new method that distinguishes human body and other objects. Proposed method is inexpensive, easy to install and most importantly, it is real-time. The evaluation of our proposed method showed that when counting people passing one by one without overlapping, recall was 96% and when people carrying handbag like objects, the precision was 88%. Our proposed method outperforms IR Infrared based people counting systems in term of counting accuracy.

  • PDF

Three-dimensional Simulation of Wave Reflection and Pressure Acting on Circular Perforated Caisson Breakwater by OLAFOAM (OLAFOAM에 기초한 원형유공케이슨 방파제의 반사율 및 작용파압에 관한 3차원시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Kim, Sang-Gi;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.286-304
    • /
    • 2017
  • In this study, we proposed a new-type of circular perforated caisson breakwater consisting of a bundle of latticed blocks that can be applied to a small port such as a fishing port, and numerically investigated the hydraulic characteristics of the breakwater. The numerical method used in this study is OLAFOAM which newly added wave generation module, porous media analysis module and reflected wave control module based on OpenFOAM that is open source CFD software published under the GPL license. To investigate the applicability of OLAFOAM, the variations of wave pressure acting on the three-dimensional slit caisson were compared to the previous experimental results under the regular wave conditions, and then the performance for irregular waves was examined from the reproducibility of the target irregular waves and frequency spectrum analysis. As a result, a series of numerical simulations for the new-type of circular perforated caisson breakwaters, which is similar to slit caisson breakwater, was carried out under the irregular wave actions. The hydraulic characteristics of the breakwater such as wave overtopping, reflection, and wave pressure distribution were carefully investigated respect to the significant wave height and period, the wave chamber width, and the interconnectivity between them. The numerical results revealed that the wave pressure acting on the new-type of circular perforated caisson breakwaters was considerably smaller than the result of the impermeable vertical wall computed by the Goda equation. Also, the reflection of the new-type caisson breakwater was similar to the variation range of the reflection coefficient of the existing slit caisson breakwater.