• Title/Summary/Keyword: Port Fuel Injector

Search Result 41, Processing Time 0.031 seconds

Wall Impingement Phenomena of a Fuel Spray Injected by an EFI Injector (EFI 인젝터에 의한 연료분무의 벽면충돌 특성)

  • Kim, Y.I.;ARAI, M.
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.37-42
    • /
    • 2004
  • In a port fuel injection system of engine, a large part of fuel injected into an intake port adheres on its wall and inlet valve. Consequently, the wall impinging spray interaction might occur the generation of several harmful phenomena. There are uncontrollable mixture formation, an accidental backfire and unburned hydrocarbons. Therefore, it is important to analyze the fuel behavior during the spray-wall interaction. In this study, splash characteristics of impingement and reflecting or scattering behavior of droplets of fuel injected from EFI nozzle were studied experimentally. A test fuel used is LAWS and its physical characteristics are similar to the conventional gasoline except for the ignition point. Since the liquid film formed immediately after impinging on an impingement plate is unstable, it is easy to cause secondary disintegration. In addition, when the intermittently impingement on the impingement plate with LAWS, the splash ratio is around 0.6. If an injection period becomes longer, liquid film will become thick and the splash ratio will fall bout 10 percent. On the other hand, when the injection period of an intermittent spray is long, the same time lapse as a continuous spray is shown.

  • PDF

Performance Improvement of a Small-Sized Two Stroke Engine by Hydrogen Direct Injection (수소 직접 분사를 통한 2행정 소형 엔진의 성능 향상에 관한 연구)

  • CHOI, JISEON;KIM, YONGRAE;KIM, SEONYOEB;PARK, CHEOLWOONG;CHOI, YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.255-260
    • /
    • 2022
  • Hydrogen gas fuel was applied to a small-sized two stroke engine for a mobile power source instead of gasoline fuel. Port fuel supply showed a limitation in terms of power due to the back fire at the engine intake manifold. So in this study, hydrogen direct injection system was applied to overcome this drawback by using a low pressure direct gas injector. The result from this strategy showed that hydrogen direct injection improved fuel efficiency as well as torque and power comparing to the port fuel supply system.

Analyzing the Spray-to-spray Interaction of GDI Injector Nozzle in the Near-field Using X-ray Phase-Contrast Imaging (X선 위상차 가시화 기법을 이용한 GDI 인젝터 노즐 근방의 분무 간 상호간섭 해석)

  • Bae, Gyuhan;Moon, Seoksu
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.60-67
    • /
    • 2020
  • Despite its benefit in engine thermal efficiency, gasoline-direct-injection (GDI) engines generate substantial particulate matter (PM) emissions compared to conventional port-fuel-injection (PFI) engines. One of the reasons for this is that the spray collapse caused by the spray-to-spray interaction forms the locally rich fuel-air mixture and increases the fuel wall film. Previous studies have investigated the spray collapse phenomenon through the macroscopic observation of spray behavior using laser optical techniques, but it is somewhat difficult to understand the interaction between sprays that is initiated in the near-nozzle region within 10 mm from the nozzle exit. In this study, the spray structure, droplet size and velocity data were obtained using an X-ray imaging technique from the near-nozzle to the downstream of the spray to investigate the spray-to-spray interaction and discuss the effects of spray collapse on local droplet size and velocity distribution. It was found that as the ambient density increases, the spray collapse was promoted due to the intensified spray-to-spray interaction, thereby increasing the local droplet size and velocity from the near-nozzle region as a result of droplet collision/coalescence.

Characteristics of the In-cylinder Flow and Fuel Behavior with Respect to Fuel Injection Angle and Cone Angle in the PFI Dual Injection Engine (PFI Dual Injection 엔진의 연료 분사각도와 분무각에 따른 엔진 내부 유동 및 연료 거동 특성)

  • Lee, Seung Yeob;Chung, Jin Taek;Park, Young Joon;Yu, Chul Ho;Kim, Woo Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.221-229
    • /
    • 2015
  • The PFI dual injection engine using one injector per an intake port was developed for solving the DISI engine cost problem. Excellent fuel atomization and targeting of the PFI dual injection engine made enhancement on the fuel efficiency and engine power. In order to develop a PFI dual injection engine, characteristics of the in-cylinder flow and fuel behavior with respect to fuel injection angle and cone angle of the PFI dual injection engine was investigated. Numerical calculation was conducted to analyze 3D unsteady in-cylinder flow and fuel behavior using STAR-CD. The engine operating condition was 2,000rpm at WOT. As a result, the amount of intake air, evaporated fuel and fuel film according to injection angle and cone angle were presented. The results were influenced by interaction between injected fuel and intake port wall.

An Investigation of the Spray Characteristics according to Injection Conditions for a Gasoline Direct Injector (직분식 가솔린 인젝터의 분사 조건에 따른 분무 특성 분석)

  • 이기형;이창식;이창희;류재덕;배재일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.89-95
    • /
    • 2001
  • Recently GDI(Gasoline Direct Injection) engine is spotlighted to achieve higher thermal efficiency under partial loads and better performance at full loads. To realize this system, it is essential to make both stratified combustion and homogeneous combustion. When compared to PFI(Port Fuel Injection) engine, GDI engine needs more complicated control and optimal design with injection system. In addition, spray pattern must be optimized according to injection timing because ambient pressure in combustion chamber is also varied. Thus spray structure should be analyzed in details to meet various conditions. In this experimental study, two types of visualization system were developed to simulate compression stroke and intake stroke, respectively. With an increase of the ambient pressure, the penetration length tends to decrease due to rising resistance caused by the drag force of the ambient air. Spray characteristics impinged on the piston has a significant effect on mixture stratification around the spark plug. These results provide the information on macroscopic spray structure and design factors far developing GDI injector.

  • PDF

Study on the Optimal Injection Condition for HC-LNT Catalyst System for Diesel Engines with a Gasoline PFI Type Injector (가솔린 인젝터를 디젤엔진용 HC-LNT 촉매에 적용하기 위한 최적 분사 조건에 관한 연구)

  • Oh, Jung-Mo;Mun, Woong-Ki;Kim, Ki-Bum;Lee, Jin-Ha;Lee, Ki-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • NOx (Nitrogen Oxide) reduction system periodically needs a rich or stoichiometric operating condition to reduce NOx. A new method that optimizes the control of external HC injection into a diesel exhaust pipe for HC-type LNT (Lean NOx Trap) catalyst system has been developed. In this paper, these catalysts are called HC-LNT catalysts. The concentration and amount of HC can be controlled by controlling the external injection. In this study, we investigated the relationship between the spray behavior of hydrocarbons injected into the transparent exhaust pipe and NOx reduction characteristics. From the results of this experiment, we obtained useful information about the optimum injection and position of HC injector to the exhaust pipe. Further, we obtained useful information about the optimal injection condition for an HC-LNT catalyst system with a gasoline PFI (port fuel injection) typeinjector.

A Study on Combustion Instability Characteristics of Hybrid Rocket using Liquefying Solid Fuel (용융성 고체 연료를 사용한 하이브리드 로켓의 연소 불안정 특성 연구)

  • Kim, Soo-Jong;Kim, Hak-Chul;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.469-473
    • /
    • 2010
  • In this study, combustion tests using liquefying fuels with fast regression rate were performed. The chamber pressure oscillation was analyzed and hazards of combustion instabilities were examined. In case of Liquefying fuel with fast regression rate, the amplitude of chamber pressure oscillation was increased compared to the polymeric fuels. However, the critical combustion instability can hardly occur in liquefying fuel. This is because the rapid change of inner chamber diameter limits the amplification of chamber pressure oscillation. The chamber pressure oscillation due to the large increase of fuel production and the vortex shedding in pre-chamber violently occurs during combustion using single-port axial injector.

  • PDF

Numerical Analysis of Combustion Field for Different Injection Angle in End-burning Hybrid Combustor (End-burning 하이브리드 연소기 인젝터 분사각에 따른 연소 유동장의 수치적 연구)

  • Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1108-1114
    • /
    • 2007
  • The effect of oxidizer injection angle on the combustion characteristics of end-burning hybrid combustor is numerically investigated. Besides the previously studied parameter(injector arrangement, port diameter and O/F ratio), three different injection angle are considered: parallel angle to fuel surface(Case 1), +30 degree inclined angle toward the fuel(Case 2) and 30 degree inclined angle toward the nozzle(Case 3). It is found that Case 2 has the best mixing pattern in the upstream area but has the worst combustion efficiency since non negligible amount of unburned fuel is expelled from the nozzle. In contrast, though Case 1 and Case 3 showed relatively low mixing effect than the Case 2, they had high combustion efficiency. The comparison of numerical results between Case 1 and Case 3 demonstrate that no major difference is encountered, however, Case 1 is expected to have the best combustion efficiency due to the low residence time of the Case 3 injector which heads toward the nozzle.

Characteristics of the In-cylinder Flow and Fuel Behavior with Respect to Engine Temperature Condition in the MPI Dual Injection Engine (MPI Dual Injection 엔진의 온도 조건 변화에 따른 엔진 내부 유동 및 연료 거동 특성에 관한 연구)

  • Lee, Seung Yeob;Chung, Jin Taek;Park, Young Joon;Yu, Chul Ho;Kim, Woo Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.210-219
    • /
    • 2014
  • The MPI dual injection engine can enhance the fuel efficiency and engine power. By using one injector per one intake port, MPI dual injection engine has an excellent fuel atomization and targeting injection. As the basic research for the MPI Dual injection engine design, this research was investigated in order to understand the characteristic of the in-cylinder flow and fuel behavior according to engine temperature condition and the fuel type in the MPI dual injection engines. The 3D unsteady CFD simulation for the MPI Dual injection engine was performed using STAR-CD. The engine operating condition was 2,000 rpm/WOT. The parameters for this study were fuel types, fuel temperatures and wall temperatures. As a result, the intake air amount, evaporated fuel in the cylinder and the fuel film on the wall were presented according to parameters that depend on the fuel properties and engine wall temperature. Also, the results were influenced by in-cylinder flow such as the intake flow, back flow and so on.

In-cylinder Spray Flow Characteristics in Direct-injection Gasoline Engine (직접 분사식 가솔린 엔진의 실린더 내 분무 유동 특성에 관한 연구)

  • 김진수;전문수;윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.51-59
    • /
    • 2000
  • In-cylinder spray flow motion plays an important in the adjustment of mixture preparation with a fundamental spray characteristics and in-cylinder flow field well in direct-injection gasoline engine. In this study, the fundamental spray characteristics such as mean drop size, velocity distribution, spray angle were measured and in-cylinder spray flow motion was visualized in order to optimize intake port, piston top land and combustion chamber shapes in the development stage of mass-produced G야 engine. For these experiments, the PDPA measurements and Mie scattering technique were used for detailed spray characteristics and in-cylinder spray motions were obtained by use of ICCD camera through the single-cylinder optical engine. From the experimental results, the test injector shows a good low-end linearity between the dynamic flow and fuel injection pulse width and the fuel spray of 20mm or less in SMD with good spray symmetry. In addition, the in-cylinder tumble flow has more effect on the homogeneous mixture formation than that of in-cylinder swirl flow at early injection mode and the in-cylinder swirl flow plays a better role of stratified mixture preparation than tumble flow at late injection mode.

  • PDF