• Title/Summary/Keyword: Porous transport layer

Search Result 41, Processing Time 0.034 seconds

Pore-network Study of Liquid Water Transport through Multiple Gas Diffusion Medium in PEMFCs (고분자 연료전지의 다공성층 내에서의 액상수분 이동에 관한 공극-네트워크 해석 연구)

  • Kang, Jung-Ho;Lee, Sang-Gun;Nam, Jin-Hyun;Kim, Charn-Jung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.46-53
    • /
    • 2011
  • Water is continuously produced in polymer electrolyte membrane fuel cell (PEMFC), and is transported and exhausted through polymer electrolyte membrane (PEM), catalyst layer (CL), microporous layer (MPL), and gas diffusion layer (GDL). The low operation temperatures of PEMFC lead to the condensation of water, and the condensed water hinders the transport of reactants in porous layers (MPL and GDL). Thus, water flooding is currently one of hot issues that should be solved to achieve higher performance of PEMFC. This research aims to study liquid water transport in porous layers of PEMFC by using pore-network model, while the microscale pore structure and hydrophilic/hydrophobic surface properties of GDL and MPL were fully considered.

  • PDF

Effect of Double Porous Layer on a Polymer Electrolyte Unitized Regenerative Fuel Cell (수전해·연료전지 가역셀에서 이중 가스 확산층의 효과)

  • Hwang, Chul-Min;Park, Dae-Heum;Jung, Young-Guan;Kim, Kyunghoon;Kim, Jongsoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.320-325
    • /
    • 2013
  • TUnitized reversible fuel cells (URFC) combine the functionality of a fuel cell and electrolyzer in one unitized device. For a URFC with proton exchange membrane, a titanium (Ti)-felt is applied to the gas diffusion layer (GDL) substrate at the oxygen electrode, and additionally titanium (Ti)-powders and TiN-powders are loaded in the GDL substrate as a micro porous layer (MPL). Double porous layer with TiN MPL was not acceptable for the URFC because both of fuel cell performance and electrolysis performance are degraded. The double porous layer with Ti-powder loading in the Ti-felt substrate influence rearly for the electrolysis performance. In contrast, the change of pore-size distribution brings a significant improvement of fuel cell performance under fully humidification conditions. This fact indicates that the hydrophobic meso-pores in the GDL play an important role for mass transport.

1D contaminant transport using element free Galerkin method with irregular nodes

  • Rupali, S.;Sawant, Vishwas A.
    • Coupled systems mechanics
    • /
    • v.5 no.3
    • /
    • pp.203-221
    • /
    • 2016
  • The present study deals with the numerical modelling for the one dimensional contaminant transport through saturated homogeneous and stratified porous media using meshfree method. A numerical algorithm based on element free Galerkin method is developed. A one dimensional form of the advectivediffusive transport equation for homogeneous and stratified soil is considered for the analysis using irregular nodes. A Fortran program is developed to obtain numerical solution and the results are validated with the available results in the literature. A detailed parametric study is conducted to examine the effect of certain key parameters. Effect of change of dispersion, velocity, porosity, distribution coefficient and thickness of layer is studied on the concentration of the contaminant.

Study on the Improvement of Electrochemical Performance by Controlling the Surface Characteristics of the Oxygen Electrode Porous Transport Layer for Proton Exchange Membrane Water Electrolysis (양이온 교환막 수전해용 산화전극 확산층의 표면 특성 제어를 통한 전기화학적 성능 개선 연구)

  • Lee, Han Eol;Linh, Doan Tuan;Lee, Woo-kum;Kim, Taekeun
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.332-339
    • /
    • 2021
  • Recently, due to concerns about the depletion of fossil fuels and the emission of greenhouse gases, the importance of hydrogen energy technology, which is a clean energy source that does not emit greenhouse gases, is being emphasized. Water electrolysis technology is a green hydrogen technology that obtains hydrogen by electrolyzing water and is attracting attention as one of the ultimate clean future energy resources. In this study, the surface properties of the porous transport layer (PTL), one of the cell components of the proton exchange membrane water electrolysis (PEMWE), were controlled using a sandpaper to reduce overvoltage and increase performance and stability. The surfaces of PTL were sanded using sandpapers of 400, 180, and 100 grit, and then all samples were finally treated with the sandpaper of 1000 grit. The prepared PTL was analyzed for the degree of hydrophilicity by measuring the water contact angle, and the surface shape was observed through SEM analysis. In order to analyze the electrochemical characteristics, I-V performance curves and impedance measurements were conducted.

Methane carbon dioxide reforming for hydrogen production in a compact reformer - a modeling study

  • Ni, Meng
    • Advances in Energy Research
    • /
    • v.1 no.1
    • /
    • pp.53-78
    • /
    • 2013
  • Methane carbon dioxide reforming (MCDR) is a promising way of utilizing greenhouse gas for hydrogen-rich fuel production. Compared with other types of reactors, Compact Reformers (CRs) are efficient for fuel processing. In a CR, a thin solid plate is placed between two porous catalyst layers to enable efficient heat transfer between the two catalyst layers. In this study, the physical and chemical processes of MCDR in a CR are studied numerically with a 2D numerical model. The model considers the multi-component gas transport and heat transfer in the fuel channel and the porous catalyst layer, and the MCDR reaction kinetics in the catalyst layer. The finite volume method (FVM) is used for discretizing the governing equations. The SIMPLEC algorithm is used to couple the pressure and the velocity. Parametrical simulations are conducted to analyze in detail the effects of various operating/structural parameters on the fuel processing behavior.

Effects of Double-diffusive Convection on the Mass Transport of Copper Ions in a Horizontal Porous Layer (수평 다공성유체층에서 이온의 물질전달에 대한 이중확산대류 효과)

  • Yoon Do-Young;Kim Min Chan;Choi Chang Kyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.98-105
    • /
    • 1999
  • In the present study, buoyant force and its stabilizing effects in an electrostatic field were examined systematically in order to reduce the effect of natural convection with thermal stratification in a horizontal fluid-saturated porous layer. The correlation of ionic mass transport induced by double-diffusive convection in a horizontal porous layer has been derived theoretically. And the theoretical model was examined by electrochemical experiments. The theoretical correlation for mass transport which is satisfying Forchheimer's flow equation and based on the micro-turbulence model is derived as a function of soltual Darcy-Rayleigh number, thermal Darcy-Rayleigh number and Lewis number. In the experiment, the mass transport of copper ions in $CuSO_4-H_2SO_4$ solution is measured by electrochemical technique. By assembling theoretical correlation and experimental results, the mass transport correlation induced by double-diffusive convection is proposed as $$Sh=\frac{0.03054(Rs_D-LeRa_D)^{1/2}}{1-3.8788(Rs_D-LeRa_D)^{-1/10}}$$ The present correlation looks flirty reasonable with comparing experimental results, and very promising for the applications of its prototype into various systems involving heat transfer as well as mass transfer, in order to control the effects of natural convection effectively.

Fabrication of Gas Diffusion Layer for Fuel Cells Using Heat treatment Slurry Coating Method (열처리 슬러리코팅법을 이용한 연료전지 가스확산층의 제조)

  • Kim, Sungjin;Park, Sung Bum;Park, Yong-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.2
    • /
    • pp.65-73
    • /
    • 2012
  • The Gas Diffusion Layer (GDL) of fuel cell, are required to provide both delivery of reactant gases to the catalyst layer and removal of water in either vapor or liquid form in typical PEMFCs. In this study, the fabrication of GDL containing Micro Porous Layer (MPL) made of the slurry of PVDF mixed with carbon black is investigated in detail. Physical properties of GDL containing MPL, such as electrical resistance, gas permeability and microstructure were examined, and the performance of the cell using developed GDL with MPL was evaluated. The results show that MPL with PVDF binder demonstrated uniformly distributed microstructure without large cracks and pores, which resulted in better electrical conductivity. The fuel cell performance test demonstrates that the developed GDL with MPL has a great potential due to enhanced mass transport property due to its porous structure and small pore size.

A study on the characterization of electrode at graphite materials by impedance spectroscopy (임피던스를 이용한 흑연재료의 전극특성에 관한 연구)

  • 오한준;김인기;이종호;이영훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.571-583
    • /
    • 1996
  • The electrochemical behavior on electrographite and graphite foil electrode with porous surface in 0.5 M $K_{2}SO_{4}$ solution with 1 mM $[Fe(CN)_{6}]^{3-}/[Fe(CN)_{6}]^{4-}$ have been characterized by impedance spectroscopy. In cyclic voltammograms, relative high current according to structure of porous surface for graphite materials was represented, and indicated hgih double layer capacitance on graphite foil. The faraday-impedance and the change of impedance spectrum on both graphite materials were not remarkable during polarization by reaction of field transport. Chemical adsorption was represented on electrographite and was depended highly at anodic polarization.

  • PDF

Application of Atomic Layer Deposition to Electrodes in Solid Oxide Fuel Cells

  • Kim, Eui-Hyeon;Hwang, Heui-Soo;Ko, Myeong-Hee;Bae, Seung-Muk;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.319.1-319.1
    • /
    • 2013
  • Solid oxide fuel cells (SOFCs) have been recognized as one of emerging renewable energy sources, due to minimized pollutant production and high efficiency in operation. The performance of SOFCs is largely dependent on the electrode polarization which involves the oxidation/reduction in cathodes and anodes along with the charge transport of ions and electronic carriers. Atomic layer deposition is based on the alternate chemical surface reaction occurring at low temperatures with high uniformity and superior step coverage. Such features can be extended into the coating of metal oxide and/or metal layer onto the porous materials. In particular, the atomic layer deposition is can manipulated in controlling the charge transport in terms of triple phase boundaries, in order to control artificially the electrochemical polarization in electrodes of SOFC. The current work applied atomic layer deposition of metal oxides intro the electrodes of SOFCs. The corresponding effect was monitored in terms of the electrochemical characterization. The roles of atomic layer deposition in solid oxide fuel cells are discussed towards optimized towards long-term durability at intermediate temperature.

  • PDF

A Study on Dependent Characteristic between The Organic Deposition Rate and The Performance in Organic Light Emitting Device

  • Kim, Mun-Su;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.150.2-150.2
    • /
    • 2015
  • In this study, we analyzed the electric and optical characteristics by using various deposition rate ($0.5{\AA}$, $1.0{\AA}$ and $1.5{\AA}/s$) in order to enhance the performance in organic light-emitting devices (OLED). The organic multi-layer structures were deposited with NPB ($500{\AA}$ as hole transport layer), Alq3 ($600{\AA}$ as electron transport layer and emission layer) and LiF ($8{\AA}$ as electron injection layer) via SUNIC PLUS200 on Glass/ITO substrates. In this experiment, we examined the relationship between porous state of organic deposition and mobility of the organic materials. Among the three deposition rates, $0.5{\AA}/s$ achieved the highest performance of (10,786cd/m2, 4.387cd/A) comparing with that of $1{\AA}/s$ (7,779cd/m2, 3.281cd/A) and $1.5{\AA}/s$ (5,167cd/m2, 2.693cd/A). We confirmed that low deposition rate helps to arrange organic materials densely and to move easily another atomic location using inter-chain transporting by orbital overlap.

  • PDF