• Title/Summary/Keyword: Porous surface

Search Result 1,500, Processing Time 0.028 seconds

Synthesis and Hydrogen Adsorption Properties of Porous Polymer

  • Wang, Qi;Liu, Jin;Zhang, Jing;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.332-336
    • /
    • 2016
  • Three kinds of porous polymer were synthesized using a solvothermal of tri-4,4'-diphenylmethane diisocyanate (MDI-trimer) and different diamino monomers. The effects of the synthesis conditions and the monomer selection on the synthesis of porous polymer properties were studied. The results show that the synthesis of $NH_2$-containing monomer molecules smaller the microporous polymers was easy to implement; the specific surface areas of the polymers are related to the monomer ratio and the reaction time. The results show that the synthesized porous polymer had good hydrogen storage performance; the hydrogen storage ability improved with the addition of heterocyclic nitrogen.

A Study on the Acoustic Properties of Porous Material by Using Acoustic Transfer Matrix (전달행렬법에 의한 다공질 흡음재의 음향특성 연구)

  • 박철희;주재만;염창훈
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.635-644
    • /
    • 1996
  • In this paper, Allard's modelling method which employs the method of acoustic transfer matrix(ATM) is applied to yield more precise results in the analysis of porous sound absorbing material. The method of ATM, based on Biot's theory, is known to play an important role in the estimation of the sound absorption when a sound projects onto the material. In the case of a single layered porous sound absorbing material, the surface impedance and the absorption coefficient by using the method of ATM are estimated. With the variation of the material properties, sound absorption characteristics and analyzed. Transmission Loss in a combination of the porous sound absorbing material with a thin plate is predicted.

  • PDF

RADIATION EFFECTS ON MHD BOUNDARY LAYER FLOW OF LIQUID METAL OVER A POROUS STRETCHING SURFACE IN POROUS MEDIUM WITH HEAT GENERATION

  • Venkateswarlu, M.;Reddy, G. Venkata Ramana;Lakshmi, D. Venkata
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.83-102
    • /
    • 2015
  • The present paper analyses the radiation effects of mass transfer on steady nonlinear MHD boundary layer flow of a viscous incompressible fluid over a nonlinear porous stretching surface in a porous medium in presence of heat generation. The liquid metal is assumed to be gray, emitting, and absorbing but non-scattering medium. Governing nonlinear partial differential equations are transformed to nonlinear ordinary differential equations by utilizing suitable similarity transformation. The resulting nonlinear ordinary differential equations are solved numerically using Runge-Kutta fourth order method along with shooting technique. Comparison with previously published work is obtained and good agreement is found. The effects of various governing parameters on the liquid metal fluid dimensionless velocity, dimensionless temperature, dimensionless concentration, skin-friction coefficient, Nusselt number and Sherwood number are discussed with the aid of graphs.

Porous Alkali Resistance Glass Preparation of ZrO2-SiO2 System by the Sol-Gel Method (졸-겔법에 의한 내알칼리성 다공질 ZrO$_2$-SiO$_2$계 유리 제조)

  • 신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.35-40
    • /
    • 1992
  • Porous glass in the ZrO2-SiO2 system containing up to 30 mol% zirconia were prepared from the mixed solutions of Zr(O.nC3H7)4 and partially prehydrolyzed TEOS by the sol-gel method. Pore characteristics, physical properties and alkali resistance were investigated. The gels converted into the porous glass by heating at $700^{\circ}C$, it was found that the glass like skeleton was already made up in lower temperature regions. The specific surface area of the porous glass was 227 $m^2$/g, average mean pore size was about 19$\AA$ and porosity was 19.2%, pore characteristics and physical properties depended on heating temperature. Alkali resistance of the porous glass increased as the zirconia content increased, because of the appearance of Zr-enriched layer at glass surface.

  • PDF

Pore Distribution of Porous Silicon layer by Anodization Process

  • Lee, Ki-Yong;Chung, Won-Yong;Kim, Do-Hyun
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.494-496
    • /
    • 1996
  • The purpose of this study is to investigate the effect of process conditions on pore distribution in porous silicon layer prepared by electrochemical reaction. Porous silicon layers formed on p-type silicon wafer show the network structure of fine porse whose diameters are less than 100${\AA}$. In n-type porous silicon, selective growth was found on the pore surface by wet etching process after PR patterning. And numerical method showed high current density on the pore tip. With this result we confirmed that pore formation has two steps. First step is the initial attack on the surface and second step is the directional growth on the pore tip.

  • PDF

A Study on Estimation Method for Physical Properties of Sound Absorbing Materials (다공성 재료의 물리적 성질 추정 방법에 대한 연구)

  • Kim, Yoon-Jae;Kang, Yeon-June;Kim, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.118-121
    • /
    • 2005
  • The acoustical performance of porous materials is determined by their seven or more macroscopic physical properties. However, it is not easy to measure all these properties in many cases. Furthermore, the measurement is compels engineers to spend much times. The effect of each property on the normal incidence absorption coefficient and normalized surface impedance was studied to estimate the properties of porous materials by numerical method. According to the investigation, Properties of porous materials are divided into several groups and estimated by each group. This paper is focused on the estimation procedure of porous materials by the numerical method.

  • PDF

A Study on the Grinding Characteristics of Porous Ceramics (Porous Ceramics의 연삭특성에 관한 연구)

  • Park, Hwi-Keun;Park, Se-Jin;Choi, Yun-Seo;Hwang, In-Hwan;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.165-170
    • /
    • 2012
  • The resin bonded diamond wheel is used to grind the difficult-to-cut materials. Traditionally, the resin bonded diamond wheel is manufactured without any pores due to the characteristics of resin bond. In this study, two porous resin bonded diamond wheel were made and the grinding characteristics were compared with traditional nonporous ones. The experimental results indicate that the porous resin bond diamond wheel require less grinding forces and powers.

Study on Mechanism of Mechanical Damping System Based on The Colloidal Suspension of Nano-Porous Particles (나노 다공성 입자의 콜로이드 서스펜션을 이용한 기계적 감쇠기구에 대한 연구)

  • W.J, Song;Kim, J.;B.Y. Moon;B.S. Kang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.359-362
    • /
    • 2003
  • Damping systems have been widely used to various industrial structures and are mainly hydraulic and pneumatic devices nowadays. In this work, a novel damping system based on the colloidal suspension in the field of nanotechnology is investigated. The colloidal suspension consists of Iyophobic working fluid and hydrophobic-coated porous particle. The mechanism of mechanical energy dissipation in damping system based on the colloidal suspension with nano-porous particles is different from that of the existing hydraulic damping system. The absorbed energy of the damping system using colloidal suspension can be calculated through the mechanical equilibrium condition by the superficial tensions of liquid-gas Interface in the hydrophobic surface in nano-porous particles. The results from an analytic approach have a reasonable agreement with experimental results.

  • PDF

Production of Porous Metallic Glass Granule by Optimizing Chemical Processing

  • Kim, Song-Yi;Guem, Bo-Kyung;Lee, Min-Ha;Kim, Taek-Soo;Eckert, Jurgen;Kim, Bum-Sung
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.251-255
    • /
    • 2014
  • In this study, we optimized dissolution the dissolution conditions of porous amorphous powder to have high specific surface area. Porous metallic glass(MG) granules were fabricated by selective phase dissolution, in which brass is removed from a composite powder consisting of MG and 40 vol.% brass. Dissolution was achieved through various concentrations of $H_2SO_4$ and $HNO_3$, with $HNO_3$ proving to have the faster reaction kinetics. Porous powders were analyzed by differential scanning calorimetry to observe crystallization behavior. The Microstructure of milled powder and dissolved powder was analyzed by scanning electron microscope. To check for residual in the dissolved powder after dissolution, energy dispersive X-ray spectroscory and elemental mapping was conducted. It was confirmed that the MG/brass composite powder dissolved in 10% $HNO_3$ produced a porous MG granule with a relatively high specific surface area of $19.60m^2/g$. This proved to be the optimum dissolution condition in which both a porous internal granule structure and amorphous phase were maintained. Consequently, porous MG granules were effectively fabricated and applications of such structures can be expanded.

A Study on a Fixed Bed Biofilm Process Using Porous Glass Media (다공성(多孔性) 유리메디아를 이용한 고정상(固定床) 생물막법(生物膜法)에 관한 연구(硏究))

  • Yoon, Tae Il;Kim, Jae Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.1
    • /
    • pp.112-120
    • /
    • 1996
  • In this study, the porous glass media was utilized as biomass carrier, and the optimum characteristics of this new media in fixed bed biofilm process were investigated. The characteristics of media considered here are a void volume fraction, a specific surface area, and surface characteristics of media. The effect of surface roughness and material could be clearly demonstrated by the fact that the porous glass media showed a good potential for biofilm development. This might results from the fact that biofilm is initially formed in the surface cavities of the media is protect from the shear effect. Therefore, the microcolonies are not readily detached by the fluid shear. In the steady state, biofilm formation along the packing bed depth was different from media to media. The specific area was also an important factor for the attachment of microorganism on the media surface. The specific area was also an important factor for the attachment of microorganism on the media surface. In the case of porous glass media, about $100m^2/m^3$ was enough to obtain a good organic removal efficiency The organic removal efficiency could be improved by increasing the void volume fraction in the reactor, at least 80% was required to obtain a high removal efficiency and prevent clogging. From the analysis of kinetics study, the yield coefficient, Y, was 0.42 mgMLSS/mgSBOD, endogenous respiration coefficient, ke, was $0.12day^{-1}$ and substrate removel coefficient of Mckinney. km, was $16.8hr^{-1}$ for the porous glass media G-2

  • PDF