• 제목/요약/키워드: Porous surface

검색결과 1,492건 처리시간 0.024초

다기공홈형 단속연삭지석의 개발에 관한 연구 (Development of Discontinuous Grinding Wheel with Multi-Porous Grooves)

  • 김정두
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.108-113
    • /
    • 1996
  • Conventionally, grinding of stainless steel, aluminium alloy, copper alloy, and titanum alloy is difficult due to the mechanical properties such as low hardness, high toughness which result in the loading of wheel and the poor surface finish. In order to grind this sort of materials easily, discontinuous grinding wheel with multi-porous grooves was newly developed. The multi-porous grooves were formed during wheel production. This discontinuous grinding wheel drastically increases the grinding performance. It is desirable to use the discontinuous grinding wheel when grinding materials with high efficiency and accuracy which is impossible by conventional wheels. In this paper, the construction and manufacturing method of grinding wheel with multi-porous grooves are explained. The grinding charateristics of discontinuous grinding wheel was also illustrated.

  • PDF

Co, Ni 마가다이트 주형을 이용한 다공성 흑연의 합성 (Preparation of Porous Graphite by Using Template of Co- and Ni-Magadiite)

  • 정순용
    • 한국분말재료학회지
    • /
    • 제12권2호
    • /
    • pp.151-158
    • /
    • 2005
  • Porous graphite was synthesized by removal of template in HF after pyrolysis of pyrolyzed fuel oil (PFO) at $900^{\circ}C$ using the template of Co or Ni intercalated magadiite. Porous graphite had a plate structure like template, and d-spacing value of about 0.7 nm. The extent of crystallization of porous graphite was dependent on the contents of Co or Ni intercalated in interlayer. It can be explained that the metal such as Co and Ni acts as a promotion catalyst for graphite formation. Porous graphite shows the surface area of $328\sim477 m^2/g$.

생리식염수의 재료표면에의 분출에 의한 이중튜브의 응혈 방지 (PREVENTION OF MURAL THROMBUS IN POROUS INNER TUBE OF DOUBLE-LAYERED TUBE BY SALINE PERFUSION)

  • 김승수;박준부
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1993년도 추계학술대회
    • /
    • pp.110-113
    • /
    • 1993
  • An in vitro experiment under laminar non-pulsatile blood flow and an acute canine ex vivo femoral A-V series shunt experiment were undertaken to investigate the effectiveness of saline perfusion through pores of porous tubes to prevent formation of mural thrombus. PS/SBR porous tubes were used for the in vitro experiment. Commercially obtained ePTFE porous tubes were etched by sodium naphthalenide, and the etched tubes were used for the ex vivo experiment. According to the results of the in vitro experiment, mural thrombus on the surface of the porous tribe could be prevented by the saline perfusion. Adhered blood cells decreased semi-logarithmically with increased perfusion rate (up to $0.022\;ml/min-cm^2$) of isotonic saline solution. According to results of the ex vivo experiment, mural thrombus decreased with increased perfusion rate (upto $0.060\;ml/min-cm^2$).

  • PDF

금속 사출성형 방식의 다공성 스테인리스 강 지지체에 형성된 팔라듐 수소 분리막의 투과 선택도 특성 (Hydrogen Perm-Selectivity Property of the Palladium Hydrogen Separation Membranes on Porous Stainless Steel Support Manufactured by Metal Injection Molding)

  • 김세홍;양지혜;임다솔;김동원
    • 한국표면공학회지
    • /
    • 제50권2호
    • /
    • pp.98-107
    • /
    • 2017
  • Pd-based membranes have been widely used in hydrogen purification and separation due to their high hydrogen diffusivity and infinite selectivity. However, it has been difficult to fabricate thin and dense Pd-based membranes on a porous stainless steel(PSS) support. In case of a conventional PSS support having the large size of surface pores, it was required to use complex surface treatment and thick Pd coating more than $6{\mu}m$ on the PSS was required in order to form pore free surface. In this study, we could fabricate thin and dense Pd membrane with only $3{\mu}m$ Pd layer on a new PSS support manufactured by metal injection molding(MIM). The PSS support had low surface roughness and mean pore size of $5{\mu}m$. Pd membrane were prepared by advanced Pd sputter deposition on the modified PSS support using fine polishing and YSZ vacuum filling surface treatment. At temperature $400^{\circ}C$ and transmembrane pressure difference of 1 bar, hydrogen flux and selectivity of $H_2/N_2$ were $11.22ml\;cm^{-2}min^{-1}$ and infinity, respectively. Comparing with $6{\mu}m$ Pd membrane, $3{\mu}m$ Pd membrane showed 2.5 times higher hydrogen flux which could be due to the decreased Pd layer thickness from $6{\mu}m$ to $3{\mu}m$ and an increased porosity. It was also found that pressure exponent was changed from 0.5 on $6{\mu}m$ Pd membrane to 0.8 on $3{\mu}m$ Pd membrane.

Electrochemical capacitor를 위한 Ru 나노입자가 담지 된 다공성 탄소 나노섬유의 제조 (Fabrication of Ru Nanoparticles Decorated Porous Carbon Nanofibers for Electrochemical Capacitors)

  • 이유진;안건형;안효진
    • 한국재료학회지
    • /
    • 제24권1호
    • /
    • pp.37-42
    • /
    • 2014
  • Well-distributed ruthenium (Ru) nanoparticles decorated on porous carbon nanofibers (CNFs) were synthesized using an electrospinning method and a reduction method for use in high-performance elctrochemical capacitors. The formation mechanisms including structural, morphological, and chemical bonding properties are demonstrated by means of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). To investigate the optimum amount of the Ru nanoparticles decorated on the porous CNFs, we controlled three different weight ratios (0 wt%, 20 wt%, and 40 wt%) of the Ru nanoparticles on the porous CNFs. For the case of 20 wt% Ru nanoparticles decorated on the porous CNFs, TEM results indicate that the Ru nanoparticles with ~2-4 nm size are uniformly distributed on the porous CNFs. In addition, 40 wt% Ru nanoparticles decorated on the porous CNFs exhibit agglomerated Ru nanoparticles, which causes low performance of electrodes in electrochemical capacitors. Thus, proper distribution of 20 wt% Ru nanoparticles decorated on the porous CNFs presents superior specific capacitance (~280.5 F/g at 10 mV/s) as compared to the 40 wt% Ru nanoparticles decorated on the porous CNFs and the only porous CNFs. This enhancement can be attributed to the synergistic effects of well-distributed Ru nanoparticles and porous CNF supports having high surface area.

Variation of Oxygen Nonstoichiometry of Porous $La_{0.6}Ca_{0.4}MnO_{3-{\delta}}$ SOFC-Cathode under Polarization

  • Mizusaki, Junichiro;Harita, Hideki;Mori, Naoya;Dokiya, Masayuki;Tagawa, Hiroaki
    • The Korean Journal of Ceramics
    • /
    • 제6권2호
    • /
    • pp.177-182
    • /
    • 2000
  • At the porous $La_{0.6}Ca_{0.4}MnO_{3-{\delta}}$(LCM)/YSZ electrodes of solid oxide fuel cells (SOFC), the electrochemical redox reaction of oxygen proceeds via the triple boundary (TPB) of gas/LCM/YSZ. The surface diffusion of adsorbed oxygen on LCM has been proposed as the rate determining process, assuming the gradient of oxygen chemical potential from the outer surface of porous layer to TPB. Along with the formation of this gradient, oxygen nonstoichiometry in the bulk of LCM may varies. In this paper, an electrochemical technique was described precisely to determine the variation of oxygen content in LCM of porous LCM/YSZ under polarization. It was shown that the oxygen potential in LCM layer under large cathodic polarization is much lower than that in the gas phase, being determined from the electrode potential and Nernst equation.

  • PDF

Modeling the Effects of Low Impact Development on Runoff and Pollutant Loads from an Apartment Complex

  • Jeon, Ji-Hong;Lim, Kyoung-Jae;Choi, Dong-Hyuk;Kim, Tae-Dong
    • Environmental Engineering Research
    • /
    • 제15권3호
    • /
    • pp.167-172
    • /
    • 2010
  • The effects of low impact development (LID) techniques, such as green roofs and porous pavements, on the runoff and pollutant load from an apartment complex were simulated using the Site Evaluation Tool (SET). The study site was the Olympic Village, a preexisting apartment complex in Seoul, South Korea, which has a high percentage of impervious surfaces (approximately 72% of the total area). Using the SET, the effects of replacing parking lots, sidewalks and driveways (37.5% of the total area) having porous pavements and rooftops (14.5% of the total area) with green roofs were simulated. The simulation results indicated that LID techniques reduced the surface runoff, and peak flow and pollutant load, and increased the evapotranspiration and soil infiltration of precipitation. Per unit area, the green roofs were better than the porous pavements at reducing the surface runoff and pollutant loads, while the porous pavements were better than green roofs at enhancing the infiltration to soil. This study showed that LID methods can be useful for urban stormwater management and that the SET is a useful tool for evaluating the effects of LID on urban hydrology and pollutant loads from various land covers.

영가철 나노 입자가 전착된 다공성 탄소전극을 이용한 과염소산 이온의 전기화학적 환원 (Electrochemical Reduction of Perchlorate Ion on Porous Carbon Electrodes Deposited with Iron Nanoparticles)

  • 이인숙;김은영;이보경;팽기정
    • 전기화학회지
    • /
    • 제18권2호
    • /
    • pp.81-85
    • /
    • 2015
  • A method for degradation of the perchlorate anion ($ClO{_4}^-$) has been studied using electrochemically generated zero-valent iron (ZVI) deposited on a porous carbon electrode. The first strategy of this study is to produce the ZVI via the electrochemical reduction of iron (II) on a porous carbon electrode coated with a conducting polymer, instead of employing expensive $NaBH_4$. The present method produced well distributed ZVI on conducting polymer (polypyrrole thin film) and increased surface area. ZVI surface can be regenerated easily for successive reduction. The second strategy is to apply a mild reducing condition (-0.3 V) to enhance the efficiency of the degradation of perchlorate with ZVI without the evolution of hydrogen. The electrochemically generated ZVI nanoparticles may offer an alternative means for the complete destruction perchlorate without evolution of hydrogen in water with high efficiency and at low cost.

Rhodamine 6G 용매에 따른 CA 훈증 지문 증강 효과에 관한 연구 (A study on Enhancement Effectiveness of Cyanoacrylate Fumed Fingermark by the Solvent of Rhodamine 6G)

  • 심예라;유제설
    • 한국콘텐츠학회논문지
    • /
    • 제17권7호
    • /
    • pp.294-302
    • /
    • 2017
  • 본 연구에서는 잠재지문이 유류되어 있는 비다공성 또는 반다공성 검체를 CA 훈증하여 지문을 현출한 후 현출된 지문을 증강하기 위해 Rhodamine 6G를 사용하였다. 각기 다른 용매를 기반으로 조제한 두 종류의 Rhodamine 6G 용액 중 어떤 것이 더욱 효과적으로 지문을 증강할 수 있는지 알아보고자 하였다. 실험에 사용한 일곱 종류의 표면 모두 유기용매 기반 Rhodamine 6G보다 수용성 기반 Rhodamine 6G를 사용하였을 때 지문이 잘 증강되고 배경 염색도 적었다. 그러나 실제 현장에서 수집되는 감식 대상은 다양한 표면 재질과 색상을 가지는 한계점이 있으므로 이를 바탕으로 추후 연구가 필요할 것으로 사료된다.

Hierarchically nanoporous carbons derived from empty fruit bunches for high performance supercapacitors

  • Choi, Min Sung;Park, Sulki;Lee, Hyunjoo;Park, Ho Seok
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.103-112
    • /
    • 2018
  • Hierarchically porous, chemically activated carbon materials are readily derived from biomass using hydrothermal carbonization (HTC) and chemical activation processes. In this study, empty fruit bunches (EFB) were chosen as the carbon source due to their sustainability, high lignin-content, abundance, and low cost. The lignin content in the EFB was condensed and carbonized into a bulk non-porous solid via the HTC process, and then transformed into a hierarchical porous structure consisting of macro- and micropores by chemical activation. As confirmed by various characterization results, the optimum activation temperature for supercapacitor applications was determined to be $700^{\circ}C$. The enhanced capacitive performance is attributed to the textural property of the extremely high specific surface area of $2861.4m^2\;g^{-1}$. The prepared material exhibited hierarchical porosity and surface features with oxygen functionalities, such as carboxyl and hydroxyl groups, suitable for pseudocapacitance. Finally, the as-optimized nanoporous carbons exhibited remarkable capacitive performance, with a specific capacitance of $402.3F\;g^{-1}$ at $0.5A\;g^{-1}$, a good rate capability of 79.8% at current densities from $0.5A\;g^{-1}$ to $10A\;g^{-1}$, and excellent life cycle behavior of 10,000 cycles with 96.5% capacitance retention at $20A\;g^{-1}$.