• Title/Summary/Keyword: Porous surface

Search Result 1,500, Processing Time 0.034 seconds

Review of the CO2 Geological Storage Using Nanoparticle-stabilized CO2 Foam (나노입자기반 CO2 폼을 이용한 CO2 지중저장에 대한 기술적 고찰)

  • Son, Han Am
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.213-220
    • /
    • 2020
  • When CO2 foam is injected into the saline aquifer, the relative permeability of CO2 decreases and its viscosity increases, thereby reducing mobility in porous media and ultimately improving CO2 storge with enhanced sweep efficiency. In general, surfactants were used to fabricate CO2 foam. Recently, nanoparticles have been used to form stable foam than surfactant. This paper introduces CO2 storage technology using nanoparticle stabilized CO2 foam. If the surface of the hydrophilic nanoparticles is partially modified into a CO2-philic portion, the particles have an affinity for CO2 and water, thus forming a stable CO2 foam even in deep saline aquifers under high temperature and high salinity conditions, thereby it can be stored in the pores of the rock. In terms of economics, injection method using nanopaticle-stabilized CO2 foam is more expensive than the conventional CO2 injection, but it is estimated that it will have price competitiveness because the injection efficiency is improved. From an environmental point of view, it is possible to inject chemical substances such as surfactants and nanomaterials into aquifers or reservoirs for specific purposes such as pollutant removal and oil production. However, some studies have shown that nanoparticles and surfactants are toxic to aquatic animals, so environmentally proven substances should be used. Therefore, further research and development will be needed to study the production and injection of nanoparticle-stabilized CO2 foam that are environmentally safe and economically reasonable.

A Study on the Design Factors of the Cylinder-Shaped Filter for Improving Reservoir Water Quality (호소수질 개선을 위한 원통형 여과장치의 설계요소 연구)

  • Lee, Sun-Ho;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.655-662
    • /
    • 2009
  • In order to obtain knowledge on the design and operation of practical?scale Cylinder-Shaped Filters, pilot experiments were conducted to observe the effects of stepwise augmentation of production rate on water quality and clogging. A production rate increase from 0.8 L/min to 2.4 L/min did not appear to affect the removal efficiencies of BOD(Biochemical Oxygen Demand), SS(Suspended Solids), and turbidity, as the values were maintained around 80%, over 95%, and over 90% respectively;however, COD(Chemical Oxygen Demand) removal decreased from 44% to 29%. In addition, results indicated an inverse relationship between production rate and detention time required to remove unit contaminant concentration, the observed detention time in the filter to remove 1 mg-COD/L being 83 minutes for the production rate of 0.8 L/min and 45 minutes for the production rate of 2.4 L/min, suggesting that a relatively higher production rate is likely to be more advantageous in the purification of reservoir water when compared to a lower production rate. Clogging was observed to originate from the surface and advance to the center of the filter, and although clogging seemed to increase as the production rate increased, this did not cause any difficulties in normal functioning of the filter for more than 2 years of operation, suggesting that this filter system can be used effectively in the purification of reservoir water.

Adhesion and Release of Bacteria in Quartz and Iron-coated Sands: Effect of Ionic Strength (석영 및 철피복 모래에서 박테리아 부착.탈착: 이온강도의 영향)

  • Lee, Chang-Gu;Park, Seong-Jik;Kim, Hyon-Chong;Han, Yong-Un;Park, Jeong-Ann;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.287-293
    • /
    • 2009
  • This study investigated the influence of ionic strength on the adhesion and release of bacteria (Escherichia coli, Bacillus subtilis, and Staphylococcus aureus) in quartz and iron-coated sands using column experiments. Results show that the mass recovery remained constant (E. coli = 13.7${\pm}$0.5%, B. subtilis = 9.8${\pm}$1.3%, S. aureus = 13.0${\pm}$2.1%) in iron-coated sand while it decreased from 80.7 to 45.3% (S. aureus) in quartz sand with increasing ionic concentrations from 1 to 100 mM. As the ionic concentrations of leaching solution was lowered from 100 to 0.1 mM, average 39.1% of bacterial detachment was quantified from quartz sand, but no bacterial release was observed in iron-coated sand. The phenomenon observed in iron-coated sand can be attributed to the inner-sphere complexes between bacteria and coated sand, which have minimal effect from ionic strength. This study improves our knowledge regarding the bacterial interaction with surface-modified porous media.

Study of Adhesion Phenomena of Alkoxysilane-type Consolidants on Fresh Granites (알콕시 실란계 석재 강화제의 화강암 점착 특성 연구)

  • Kim, Eun-Kyung;Son, Seung-Hwan;Won, Jong-Ok;Kim, Jeong-Jin;Kim, Sa-Dug
    • Journal of Conservation Science
    • /
    • v.23
    • /
    • pp.1-10
    • /
    • 2008
  • Consolidants based on tetraethoxysilane (TEOS) such as alkoxysilanes have been widely used for the consolidation of decaying stone heritages. Low-viscosity alkoxysilanes penetrate inside the decaying stone and polymerize within the porous structure of the decaying stone, significantly increasing the cohesion of the material. However, TEOS-based consolidants suffer from practical drawbacks, such as crack formation of the gel during the drying phase due to the developed capillary force, which is typical for TEOS-based consolidants. We prepared new consolidants TEOS-based consolidants containing flexible (3-glycidoxypropyl)trimethoxysilane (GPTMS) and silica nanoparticles (or polyhedral oligomeric silsesquioxanes (POSS)) in order to reduce capillary force development during gel drying. Since the consolidants should have a good interaction with the component of the stone in order to connect the isolate grains of decaying stone, the adhesion interaction of the developed consolidants on the surface of the granite was macroscopically investigated by the ISO 2409 cross cutting test. The adhesion interaction decreased with the addition of silica nanoparticle and POSS while it increased with the addition of GPTMS in TEOS solution.

  • PDF

Hydrothermal Mechanism of Na-A Type Zeolite from Natural Siliceous Mudstone (규질 이암으로부터 Na-A형 제올라이트 수열합성 반응기구에 대한 연구)

  • Bae, In-Kook;Jang, Young-Nam;Chae, Soo-Chun;Kim, Byoung-Gon;Ryu, Kyoung-Won;Lee, Sung-Ki
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.223-229
    • /
    • 2007
  • The mechanism of hydrothermally synthesizing Na-A zeolite from siliceous mudstone at a $Na_2O/SiO_2$ ratio of 0.6, a $SiO_2/Al_2O_3$ 2.0 and a $H_2O/Na_2O$ 119 has been observed by IR, DTA, XRD and SEM. This mudstone is a tertiary periodic sedimentary rock and widely spreads around the Pohang area. In the early hydrothermal synthesis at $80^{\circ}C$ in an autoclave, sodium silicate and sodium aluminate were found to be preferentially reacted to generate Na-A type zeolite. Gibbsite and bayerite were also formed due to the presence of extra aluminum oxide in the feedstock. As reaction time in-creased up to 50 h, residual sodium aluminatewas reacted with siliceous mudstone, causing the Na-A zeolite crystal to grow and the hydroxylsodalite to generate. Therefore, in the $14{\sim}50\;h$ synthetic time, Na-A zeolite and hydroxylsodalite were formed. Also, if reaction time passed over 50 h, a part of the Na-A zeolite was finally redissolved and reacted with hydroxylsodalite to synthesize Na-P zeolite, generating porous surface of Na-A zeolite and disappearing hydroxylsodalite.

Synthesis of Butenes through Butanol Dehydration over Catalyst Prepared from Water Treatment Sludge (정수 슬러지로부터 제조된 촉매 상에서 부탄올 탈수반응을 통한 부텐 제조)

  • Kim, Goun;Bae, Junghyun;Choi, Hyeonhee;Lee, Choul-Ho;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.121-126
    • /
    • 2015
  • The objective of this study is to evaluate the catalytic potential of the porous material prepared from water treatment sludge. The textural properties of the catalyst were studied using $N_2$ adsorption and desorption isotherms, scanning electron microscope, and X-ray diffraction. The pellet-type catalyst prepared using water treatment sludge is determined to be a material that contains mesopores as well as micropores. The specific surface area of the catalyst is $157m^2/g$. Acidic characteristics of the catalyst are analyzed by temperature-programmed desorption of ammonia and infrared spectroscopy of adsorbed pyridine. 2-Butanol dehydration reaction was carried out in a fixed bed catalytic reactor. Yields of 1-butene, trans-2-butene, and cis-2-butene at $350^{\circ}C$ were 25.6 wt%, 19.2 wt%, and 29.9 wt%, respectively. This catalytic activity of the catalyst based on water treatment sludge in 2-butanol dehydration is due to the acid sites composed of Bronsted acid sites and Lewis acid sites. It was confirmed that the catalyst based on water treatment sludge can be utilized to produce $C_4$ olefin through butanol dehydration.

$H_{2}S$ Removal and $CO_{2}/CH_{4}$ Separation of Ternary Mixtures Using Polyimide Hollow Fiber Membrane (폴리이미드 중공사막을 이용한 혼합기체로부터 $H_{2}S$ 제거 및 $CO_{2}/CH_{4}$ 분리에 관한 연구)

  • Park, Bo-Ryoung;Kim, Dae-Hoon;Jo, Hang-Dae;Seo, Yong-Seog;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.250-255
    • /
    • 2011
  • In this study, by using the polymeric membrane separation process, the $CO_{2}/CH_{4}$ separation and $H_{2}S$ removal from biogas were performed in order to $CH_{4}$ purification and enrichment for the fuel cell energy source application. Fibers were spun by dry/wet phase inversion method. The module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy(SEM) studies showed that the produced fibers typically had an asymmetric structure; a dense top layer supported by a porous, sponge substructure. The permeance of $CO_{2}$ and $CO_{2}/CH_{4}$ selectivity increased with pressure and temperature. Mixture gas with increasing pressure and temperature, removal efficiency of the $CO_{2}$ and $H_{2}S$ were decreased while concentration of $CH_{4}$ was increased up to 100%. When retentate flow rate was increased with the decreasing of pressure and temperature the $CH_{4}$ recovery ratio in retentate side was increased while the $CH_{4}$ purity in retentate side was decreased.

Characteristics of Flux Decline in Forward Osmosis Process for Asymmetric Cellulose Membrane (정삼투 공정에 있어 비대칭 셀룰로오즈 막의 투과유속 감소특성)

  • Lee, Keun-Woo;Han, Myeong-Jin;Nam, Suk-Tae
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.328-334
    • /
    • 2014
  • This study examined the effect of concentration polarization on permeate flux in forward osmosis (FO) membrane process for saline and sucrose solution. The reduction in permeate flux during the FO membrane process is largely due to the formation of concentration polarization on membrane surfaces. The flux reduction due to internal concentration polarization formed on the porous support layer was larger than that due to the external concentration polarization on the active membrane surface. Water permeate flux through the FO membrane increased nonlinearly with the increase in osmotic pressure. The water permeability coefficient was $1.8081{\times}10^{-7}m/s{\cdot}atm$ for draw solution on active layer (DS-AL) mode and $1.0957{\times}10^{-7}m/s{\cdot}atm$ for draw solution on support layer (DS-SL) mode in NaCl solution system. The corresponding membrane resistance was $5.5306{\times}10^6$ and $9.1266{\times}10^6s{\cdot}atm/m$, respectively. With respect to the sucrose solution, the permeate flux for DS-AL mode was 1.33~1.90 times higher than that for DS-SL mode. The corresponding variation in the permeation flux (J) due to osmotic pressure (${\pi}$) would be expressed as $J=-0.0177+0.4506{\pi}-0.0032{\pi}^2$ for the forward and $J=0.0948+0.3292{\pi}-0.0037{\pi}^2$ for the latter.

Heat-up Calculation for the Auxiliary Feed Water Pump Room at Ulchin Units 3 and 4 for Loss of HVAC Accidents (HVAC 상실사고시 울진원전 3/4 호기의 보조급수펌프 격실 온동상승 평가)

  • Yoon, Churl;Park, Jin-Hee;Hwang, Mee-Jeong;Han, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.553-562
    • /
    • 2012
  • Computational Fluid Dynamics (CFD) analysis has been performed to estimate the air temperature inside an Auxiliary Feed Water (AFW) Motor-Driven (MD) pump room for the case where there is loss of Heating, Ventilation, and Air-Conditioning (HVAC). A transient calculation for the closed pump room without cooling by any HVAC system shows that the volume-averaged air temperature reaches around $60^{\circ}C$ for a transient period of 8.0 h. From previous studies, the external air and surface boundary temperatures are assumed to increase slowly starting from an initial temperature of $35^{\circ}C$. For the cases where the door is opened at 2, 4, and 6 h after the initiation of HVAC failure, the average air temperature promptly drops by about $4^{\circ}C$ when the door is opened and then slowly increases. The current calculations based on the CFD technique predict the rate of increase of air temperature to be lower than that determined by previous conservative calculations on the basis of a lumped model.

New Synthesis of the Ternary Type Bi2WO6-GO-TiO2 Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-catalytic Effect (개선된 광촉매 효과를 위한 수열법에 의한 삼원계 Bi2WO6-GO-TiO2 나노복합체의 쉬운 합성 방법)

  • Nguyen, Dinh Cung Tien;Cho, Kwang Youn;Oh, Won-Chun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.705-713
    • /
    • 2017
  • A novel material, $Bi_2WO_6-GO-TiO_2$ composite, was successfully synthesized using a facile hydrothermal method. During the hydrothermal reaction, the loading of $Bi_2WO_6$ and $TiO_2$ nanoparticles onto graphene sheets was achieved. The obtained $Bi_2WO_{6-GO-TiO2}$ composite photo-catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis-DRS), and X-ray photoelectron spectroscopy (XPS). The $Bi_2WO_6$ nanoparticle showed an irregular dark-square block nanoplate shape, while $TiO_2$ nanoparticles covered the surface of the graphene sheets with a quantum dot size. The degradation of rhodamine B (RhB), methylene blue trihydrate (MB), and reactive black B (RBB) dyes in an aqueous solution with different initial amount of catalysts was observed by UV spectrophotometry after measuring the decrease in the concentration. As a result, the $Bi_2WO_6-GO-TiO_2$ composite showed good decolorization activity with MB solution under visible light. The $Bi_2WO_6-GO-TiO_2$ composite is expected to become a new potential material for decolorization activity. Photocatalytic reactions with different photocatalysts were explained by the Langmuir-Hinshelwood model and a band theory.