• 제목/요약/키워드: Porous substrates

검색결과 140건 처리시간 0.033초

저토심 옥상녹화 시스템에서 돌나물(Sedum sarmentosum)의 생육에 대한 인공배지 종류, 토심, 그리고 배수 형태의 효과 (Effects of Artificial Substrate Type, Soil Depth, and Drainage Type on the Growth of Sedum sarmentosum Grown in a Shallow Green Rooftop System)

  • 허근영;김인혜;강호철
    • 한국조경학회지
    • /
    • 제31권2호
    • /
    • pp.102-112
    • /
    • 2003
  • This study was carried out to research and develop a shallow green rooftop system which would require low maintenance and therefore could be used for existing rooftops. To achieve these goals, the conceptual model was induced by past studies and the experimental systems were deduced from the conceptual model. On the growth of Sedum sarmentosum grown in these rooftop systems, the effects of artificial substrate type, soil depth, and drainage type were investigated from 3 April to 11 October 2002. Artificial substrates were an alone type and a blending type. The alone type was an artificial substrate formulated by blending crushed porous glass with bark(v/v, 6:4). The blending type was formulated by blending the alone type with loam(v/v, 1:1). Soil depths were 5cm, loom, and 15cm. Drainage types were a reservoir-drainage type and a drainage type. The reservoir-drainage type could keep water and drain excessive water at the same time. The drainage type could drain excessive water but could not keep water. Covering area, total fresh and dry weight, visual quality, and water content per 1g dry matter were measured. All the variables were analyzed by correlation analysis and factor analysis. The results of the study are summarized as follows. The growth increment was higher in the blending type than in the alone type, the highest in loom soil depth and higher in the reservoir-drainage type than in the drainage type. The growth quality was higher in the blending type than in the alone type, the highest in l0cm soil depth, and higher in the drainage type than in the reservoir-drainage type. In consideration of the permissible load on the existing rooftops and the effects of the treatments on the growth increment and quality, the system should adopt the blending type in artificial substrate types, 5~10cm in soil depths, and the drainage type in drainage types. This system will be well-suited to the growth of Sedum sarmentosum, and when the artificial substrate was in field capacity, the weight will be 75~115kg/$m^2$.

산화아연-단일벽탄소나노튜브복합체의 일산화질소 감지 특성 (NO Gas Sensing Properties of ZnO-SWCNT Composites)

  • 장동미;안세용;정혁;김도진
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.623-627
    • /
    • 2010
  • Semiconducting metal oxides have been frequently used as gas sensing materials. While zinc oxide is a popular material for such applications, structures such as nanowires, nanorods and nanotubes, due to their large surface area, are natural candidates for use as gas sensors of higher sensitivity. The compound ZnO has been studied, due to its chemical and thermal stability, for use as an n-type semiconducting gas sensor. ZnO has a large exciton binding energy and a large bandgap energy at room temperature. Also, ZnO is sensitive to toxic and combustible gases. The NO gas properties of zinc oxide-single wall carbon nanotube (ZnO-SWCNT) composites were investigated. Fabrication includes the deposition of porous SWCNTs on thermally oxidized $SiO_2$ substrates followed by sputter deposition of Zn and thermal oxidation at $400^{\circ}C$ in oxygen. The Zn films were controlled to 50 nm thicknesses. The effects of microstructure and gas sensing properties were studied for process optimization through comparison of ZnO-SWCNT composites with ZnO film. The basic sensor response behavior to 10 ppm NO gas were checked at different operation temperatures in the range of $150-300^{\circ}C$. The highest sensor responses were observed at $300^{\circ}C$ in ZnO film and $250^{\circ}C$ in ZnO-SWCNT composites. The ZnO-SWCNT composite sensor showed a sensor response (~1300%) five times higher than that of pure ZnO thin film sensors at an operation temperature of $250^{\circ}C$.

첨가제와 잔류응력이 탄소 기지상 무전해 니켈도금에 미치는 영향 (The Effects of Additives and Residual Stresses on the Electroless Nickel Plating on Carbon Substrate)

  • 천소영;임영목;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제18권4호
    • /
    • pp.43-48
    • /
    • 2011
  • 탄소 기지상에 니켈도금을 하여 다공성 MCFC의 전극으로 사용하기 위하여 탄소 기지위에 산성용액과 염기성용액을 이용하여 무전해 니켈도금을 하였다. 알칼리 용액에서의 도금속도가 산성용액에서의 도금속도보다 빨랐으며 두가지 용액에서 pH가 증가함에 따라 도금속도가 증가하였다. 산성용액에서의 잔류응력은 압축응력을 보였으며 알칼리용액에서는 높은 인장응력을 보였으며 높은 잔류응력으로 인하여 pH 11 이상에서는 표면균열이 발생하였다. Thiourea를 첨가하였을 경우 0.5 ppm까지의 저농도에서 도금속도가 증가하다가 이후 감소하였으며 1.5 ppm 이상에서 두가지 용액에서 모두 도금이 더 이상 진행되지 않았다. Succine 산을 첨가한 경우 5 g/L까지 속도가 증가하다가 감소하여 일정한 값을 유지하였다.

불화 실리카로 개질된 폴리에테르이미드 중공사막을 이용한 혐기성 유출수로부터 바이오가스 회수 (PEI Hollow Fiber Membranes Modified with Fluorinated Silica Nanoparticles for the Recovery of Biogas from Anaerobic Effluents)

  • 윤강희;수니 웡치피몬;배태현
    • 멤브레인
    • /
    • 제30권5호
    • /
    • pp.326-332
    • /
    • 2020
  • 본 연구에서는, 혐기성 처리수에 용해된 바이오가스의 회수를 위해 불화 실리카/고분자 중공사 복합막을 제조하고 막접촉기에서의 성능을 평가하였다. 복합막은 상용 폴리에테르이미드인(PEI) Ultem®을 이용하여 만든 중공사막 표면에 불화 실리카를 강력한 공유 결합을 통해 코팅하는 방법으로 제조되었다. 막접촉기는 바이오가스로 포화된 수용액을 중공사의 외부에 공급하고, 중공사 내부로 기체를 투과시키는 방법으로 운전하였다. 높은 공극률을 가진 중공사막(PEI-fSiO2-A)은 액상 속도가 0.03 m/s일 때 메탄 회수 유량이 8.25 × 10-5 ㎤ (STP)/㎠·s에 달했고 불화 실리카에 의해 표면 소수성이 매우 높아져 물과의 접촉각이 75.6°에서 120~122°로 향상되었다. 본 연구에서 제조된 복합막은 바이오가스의 투과 속도와 소수성 모두에서 탈기용으로 제조된 상용 폴리프로필렌 막보다 우수한 성능을 나타냈다.

실리콘 빔이 실리콘 고무 멤브레인에 삽입된 빗살형 차압센서의 설계 및 제조 (Design and fabrication of a comb-type differential pressure sensor with silicon beams embedded in a silicone rubber membrane)

  • 박정용;공성수;서창택;신장규;고광락;이종현
    • 센서학회지
    • /
    • 제9권6호
    • /
    • pp.424-429
    • /
    • 2000
  • 실리콘 고무 멤브레인(membrane)에 실리콘 빔(beam)들이 삽입된 형태의 저차압센서를 개발하였다. 제작된 저차압센서는 실리콘 고무(silicone rubber)를 멤브레인으로 사용함으로써 열악한 환경에서도 다양한 응용분야에 적용 가능하도록 하였다. 실리론 고무 멤브레인을 사용한 압저항형 저차압센서는 선택적으로 도핑(doping)된 (100) n/n+/n 웨이퍼 상에 다공질 마이크로머시넝(micro-machining) 기술을 이용하여 제작되었다. 제조된 센서의 감도(sensitivity)는 $0.66{\mu}V/mmHg$이고, 0.1% 이하의 비선형성(non-linearity)을 보였다.

  • PDF

Synthesis of IZTO(Indium Zinc Tin Oxide) particle by spray pyrolysis and post-heat treatment and characterization of deposited IZTO film

  • Lim, Seong Taek;Kim, Sang Hern
    • 한국응용과학기술학회지
    • /
    • 제33권4호
    • /
    • pp.734-740
    • /
    • 2016
  • The micron-sized indium zinc tin oxide (IZTO) particles were prepared by spray pyrolysis from aqueous precursor solution for indium, zinc, and tin and organic additives such as citric acid (CA) and ethylene glycol (EG) were added to aqueous precursor solution for indium, zinc, and tin. The obtained IZTO particles prepared by spray pyrolysis from the aqueous solution without organic additives had spherical and filled morphologies, whereas the IZTO particles obtained with organic additives had more hollow and porous morphologies. The micron-sized IZTO particles with organic additives were changed fully to nano-sized IZTO particles, whereas the micron-sized IZTO particles without organic additives were not changed fully to nano-sized IZTO particle after post-treatment at $700^{\circ}C$ for 2 hours and wet-ball milling for 24 hours. Surface resistances of micron-sized IZTO's before post-heat treatment and wet-ball milling were much higher than those of nano-sized IZTO's after post-heat treatment and wet-ball milling. From IZTO with composition of 80 wt. % $In_2O_3$, 10 wt. % ZnO, and 10 wt. % $SnO_2$ which showed a smallest surface resistance IZTO after post-heat treatment and wet-ball milling, thin films were deposited on glass substrates by pulsed DC magnetron sputtering, and the electrical and optical properties were investigated.

SURFACE ANALYSES OF TITANIUM SUBSTRATE MODIFIED BY ANODIZATION AND NANOSCALE Ca-P DEPOSITION

  • Lee, Joung-Min;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • 대한치과보철학회지
    • /
    • 제45권6호
    • /
    • pp.795-804
    • /
    • 2007
  • Statement of problem. Nano-scale calcium-phosphate coating on the anodizing titanium surface using ion beam-assisted deposition (IBAD) has been recently introduced to improve the early osseointegration. However, not much is known about their surface characteristics that have influence on tissue-implant interaction. Purpose. This study was aimed to investigate microtopography, surface roughness, surface composition, and wettability of the titanium surface modified by the anodic oxidation and calcium phosphate coating using IBAD. Material and methods. Commercially pure titanium disks were used as substrates. The experiment was composed of four groups. Group MA surfaces represented machined surface. Group AN was anodized surface. Group CaP/AN was anodic oxidized and calcium phosphate coated surfaces. Group SLA surfaces were sandblasted and acid etched surfaces. The prepared titanium discs were examined as follows. The surface morphology of the discs was examined using SEM. The surface roughness was measured by a confocal laser scanning microscope. Phase components were analyzed using thin-film x-ray diffraction. Wettability analyses were performed by contact angle measurement with distilled water, formamide, bromonaphtalene and surface free energy calculation. Results. (1) The four groups showed specific microtopography respectively. Anodized and calcium phosphate coated specimens showed multiple micropores and tiny homogeneously distributed crystalline particles. (2) The order of surface roughness values were, from the lowest to the highest, machined group, anodized group, anodized and calcium phosphate deposited group, and sandblasted and acid etched group. (3) Anodized and calcium phosphate deposited group was found to have titanium and titanium anatase oxides and exhibited calcium phosphorous crystalline structures. (4) Surface wettability was increased in the order of calcium phosphate deposited group, machined group, anodized group, sandblasted and acid etched group. Conclusion. After ion beam-assisted deposition on anodized titanium, the microporous structure remained on the surface and many small calcium phosphorous crystals were formed on the porous surface. Nanoscale calcium phosphorous deposition induced roughness on the microporous surface but hydrophobicity was increased.

$Sr_{2}FeMoO_{6}$ 소결체와 스퍼터링법으로 제조된 박막의 초거대자기저항현상에 관한 연구 (Colossal magnetoresistance of double-ordered perovskite $Sr_{2}FeMoO_{6}$ ceramics and sputter-deposited films)

  • 이원종;장원위
    • 한국결정성장학회지
    • /
    • 제12권1호
    • /
    • pp.36-41
    • /
    • 2002
  • $H_2$(5%)/Ar의 환원분위기에서 $900^{\circ}C$ 이상의 온도로 소결함으로써 화학양론적인 조성비를 만족하면서 이중 페롭스카이트 구조를 갖는 $Sr_2FeMoO_6$ (SFMO) 소결체를 제조하였다. SFMO 소결체는 우수한 강자성 특성을 나타내었고 8K에서 15%와 상온에서 3% 정도의 자기저항비를 나타내었다. 이 SFMO 소결체를 타겟으로하여 스퍼터링법으로와의 단결정 기판 위에 비정질 SFMO 박막을 증착한 후, 적절한 H$_2$(5%)/Ar의 환원분위기, $680^{\circ}C$ 이상) 열처리 조건의 고상결정법으로 이중 페롭스카이트 구조의 다결정 SFMO 박막을 제조하였다. 이 SFMO 박막은 강자성 특성을 잘 나타내었으나, 자기저항 특성은 상온에서는 나타나지 않았고 8K에서 약 0.3-0.5%의 자기저항비를 나타내었다. 이와같이 박막의 경우 자기저항 특성이 떨어지는 이유는 제조된 SFMO 박막이 화학양론비를 만족하지 못하고 조직의 치밀도가 떨어져서 결정립 사이에서 발생하는 자기스핀 터널링이 제대로 발생하지 못하였기 때문이라 생각되었다.

Fabrication of NiO-Y:BaZrO3 Composite Anode for Thin Film-Protonic Ceramic Fuel Cells using Tape-Casting

  • Bae, Kiho;Noh, Ho-Sung;Jang, Dong Young;Kim, Manjin;Kim, Hyun Joong;Hong, Jongsup;Lee, Jong-Ho;Kim, Byung-Kook;Son, Ji-Won;Shim, Joon Hyung
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.320-324
    • /
    • 2015
  • Optimization of the fabrication process of NiO-yttrium doped barium zirconate (BZY) composite anode substrates using tape-casting for high performance thin-film protonic ceramic fuel cells (PCFCs) is investigated. The anode substrate is composed of a tens of microns-thick anode functional layer laminated over a porous anode substrate. The macro-pore structure of the anode support is induced by micron-scale polymethyl methacrylate (PMMA) pore formers. Thermal gravity analysis (TGA) and a dilatometer are used to determine the polymeric additive burn-out and sintering temperatures. Crystallinity and microstructure of the tape-cast NiO-BZY anode are analyzed after the sintering.

Preparation and Electrochemical Performance of Electrode Supported La0.75Sr0.25Ga0.8Mg0.16Fe0.04O3-δ Solid Oxide Fuel Cells

  • Yu, Ji-Haeng;Park, Sang-Woon;Woo, Sang-Kuk
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.479-484
    • /
    • 2011
  • In this paper, investigations of thick film $La_{0.75}Sr_{0.25}Ga_{0.8}Mg_{0.16}Fe_{0.04}O_{3-{\delta}}$ (LSGMF) cells fabricated via spin coating on either NiO-YSZ anode or $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_3$ (LSGF) cathode substrates are presented. A La-doped $CeO_2$ (LDC) layer is inserted between NiO-YSZ and LSGMF in order to prevent reactions from occurring during co-firing. For the LSGF cathode-supported cell, no interlayer was required because the components of the cathode are the same as those of LSGMF with the exception of Mg. An LSGMF electrolyte slurry was deposited homogeneously on the porous supports via spin coating. The current-voltage characteristics of the anode and cathode supported LSGMF cells at temperatures between $700^{\circ}C$ and $850^{\circ}C$ are described. The LSGF cathode supported cell demonstrates a theoretical OCV and a power density of ~420 mW $cm^2$ at $800^{\circ}C$, whereas the NiO-YSZ anode supported cell with the LDC interlayer demonstrates a maximum power density of ~350 mW $cm^2$ at $800^{\circ}C$, which decreased more rapidly than the cathode supported cell despite the presence of the LDC interlayer. Potential causes of the degradation at temperatures over $700^{\circ}C$ are also discussed.