• 제목/요약/키워드: Porous structure

검색결과 1,192건 처리시간 0.028초

다층 다공성 실리콘의 합성과 그 광학적 특성 조사 (Synthesis and Optically Characterization of Bragg Structure Porous Silicon)

  • 김성기
    • 통합자연과학논문집
    • /
    • 제2권1호
    • /
    • pp.45-49
    • /
    • 2009
  • Electrochemical etching of heavily doped p-type silicon wafers (boron doped, <100> orientation, resistivity; $0.8-1.2m{\Omega}/cm$) with different current density resulting two different refractive indices resulted in DBR (Distributed Bragg Reflectors) porous silicon, which exhibited strong in-plane anisotropy of refractive index (birefringence). Dielectric stacks of birefringent porous silicon acting as distributed Bragg reflectors have two distinct reflection bands depending on the polarization of the incident linearly polarized light. This effect is caused by a three-dimensional (in plane and in depth) variation of the refraction index. Optical characteristics of DBR porous silicon were investigated.

  • PDF

Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies

  • Zhang, Ting;Zhang, Xinwei;Mao, Mengyun;Li, Jiayi;Wei, Ting;Sun, Huiqiang
    • Journal of Periodontal and Implant Science
    • /
    • 제50권6호
    • /
    • pp.392-405
    • /
    • 2020
  • Purpose: Titanium implants are widely used in the treatment of dentition defects; however, due to problems such as osseointegration failure, peri-implant bone resorption, and periimplant inflammation, their application is subject to certain restrictions. The surface modification of titanium implants can improve the implant success rate and meet the needs of clinical applications. The goal of this study was to evaluate the effect of the use of porous titanium with a chitosan/hydroxyapatite coating on osseointegration. Methods: Titanium implants with a dense core and a porous outer structure were prepared using a computer-aided design model and selective laser sintering technology, with a fabricated chitosan/hydroxyapatite composite coating on their surfaces. In vivo and in vitro experiments were used to assess osteogenesis. Results: The quasi-elastic gradient and compressive strength of porous titanium implants were observed to decrease as the porosity increased. The in vitro experiments demonstrated that, the porous titanium implants had no biological toxicity; additionally, the porous structure was shown to be superior to dense titanium with regard to facilitating the adhesion and proliferation of osteoblast-like MC3T3-E1 cells. The in vivo experimental results also showed that the porous structure was beneficial, as bone tissue could grow into the pores, thereby exhibiting good osseointegration. Conclusions: Porous titanium with a chitosan/hydroxyapatite coating promoted MC3T3-E1 cell proliferation and differentiation, and also improved osseointegration in vitro. This study has meaningful implications for research into ways of improving the surface structures of implants and promoting implant osseointegration.

분자동역학을 이용한 다공성 물질 건조공정 멀티스케일 시뮬레이션(1부 : 균질화법 해석) (Multi-scale simulation of drying process for porous materials using molecular dynamics (part 1 : homogenization method))

  • 오진원;백성민;금영탁
    • 한국결정성장학회지
    • /
    • 제14권3호
    • /
    • pp.115-122
    • /
    • 2004
  • 다공성 물질이 건조될 때 입자는 겔 상태의 그물망 구조를 갖는다. 따라서 건조공정 중 발생하는 잔류응력을 정확하게 해석하기 위해서는 공극률과 공극형상에 따른 물성을 알아야 한다. 본 연구에서는 균질화법으로 원형과 십자형의 공극을 갖는 미시적인 겔구조로부터 공극률에 따른 재료의 탄성특성을 예측하고. 다공성 세라믹 애자의 건조공정을 유한요소 해석하였다. 해석 결과, 변형 형상과 온도, 습도 분포는 공극을 고려하지 않은 해석과 유사하지만 잔류응력 값은 큰 차이가 있음을 알 수 있었다.

배후공기층이 복합흡음구조의 흡음특성에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Air Space on the Absorption Property of Composite Absorption System)

  • 오양기
    • KIEAE Journal
    • /
    • 제1권2호
    • /
    • pp.47-54
    • /
    • 2001
  • Single sound absorbers such as porous materials, panels, and Helmholts resonators have limited performance with some extents of frequency region. For example, porous materials do not attenuate low frequency sounds, while panels do not absorb high frequency sounds. Composite absorption structure with coverings, porous materials, and air gaps are an alternative for wide band sound absorption. Slits, panels, perforated panels are those materials for coverings, glass wool, mineral wool, polyester, and polyurethane are frequently used porous materials. Air gap between the porous material and background surface is one of major factors which governs the absorption characteristics of composite absorption structures, especially in the low frequency area. Calculations and measurements show that the absorption coefficients of composite absorption structure, in mid and low frequency bands, are getting higher with increased air gaps. Perforated panels rather than slits and panels are good coverings with higher number as far as absorption coefficient is concerned. Perforated panels with porous materials and 37 cm of air gaps in background have high absorption coefficients for all frequency bands, above 0.7 to 1.0. All measurements are performed in reverberation chamber, Mokpo National University, according to ISO 354 and ISO 3382.

  • PDF

결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구 (Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells)

  • 이은주;이수홍
    • 신재생에너지
    • /
    • 제2권2호
    • /
    • pp.4-8
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient Reff lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF

Porous Si Layer by Electrochemical Etching for Si Solar Cell

  • Lee, Soo-Hong
    • 한국전기전자재료학회논문지
    • /
    • 제22권7호
    • /
    • pp.616-621
    • /
    • 2009
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating(ARC) and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si ARC layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated with SEM. The formation of a nanoporous Si layer about 100nm thick on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.

다공성 실리콘 막을 적용한 결정질 실리콘 태양전지 특성 연구 (Investigation of the crystalline silicon solar cells with porous silicon layer)

  • 이은주;이일형;이수홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.295-298
    • /
    • 2007
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating(ARC) and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si ARC layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated with SEM. The formation of a nanoporous Si layer about 100nm thick on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.

  • PDF

다공 세라믹 연소기 속에서의 예혼합연소에 대한 민감도 해석의 적용 (Application of sensitivity analyses in premixed combustion within a porous ceramic burner)

  • 임인권
    • 대한기계학회논문집B
    • /
    • 제22권2호
    • /
    • pp.162-172
    • /
    • 1998
  • A numerical study of premixed combustion within a porous ceramic burner (PCB) is performed to understand flame behavior with respect to various model parameters. Basic flame structure within the porous ceramic burner and species profiles such as NO and CO are examined. Sensitivity analysis of flame speed, gas and solid temperature, NO and CO emission from the burner with respect to reaction steps and various physical properties of the ceramic material is applied to find the most significant parameters in selection of porous materials for the porous ceramic burner. Effects of thermal conductivity, extinction coefficient and scattering albedo on the burner characteristics are studied through the sensitivity analysis. The results of sensitivity study reveal the order of importance in ceramic material properties to get suitable burner performance. Scattering albedo, which governs the ratio of absorbed energy by the ceramic material to total radiative energy transferred, is one of the most important parameters in the material properties since it affects the actual absorbed radiation rate and thus it largely affects the flame structure. Through the study, it is found that the sensitivity study can be used to estimate the flame behavior within the porous ceramic burner more effectively.

결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구 (Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells)

  • 이은주;이수홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.183-186
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient $R_{eff}$ lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF

Enhancement of Analyte Ionization in Desoprtion/Ionization on Porous Silicon (DIOS)-Mass Spectrometry(MS)

  • Lee Chang-Soo;Kim Eun-Mi;Lee Sang-Ho;KIm Min-Soo;Kim Yong-Kweon;Kim Byug-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권3호
    • /
    • pp.212-217
    • /
    • 2005
  • Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a relatively new laser desorption/ionization technique for mass spectrometry without employing an organic matrix. This present study was carried to survey the experimental factors to improve the efficiency of DIOS-MS through electrochemical etching condition in structure and morphological properties of the porous silicon. The porous structure of silicon structure and its properties are crucial for the better performance of DIOS-MS and they can be controlled by the suitable selection of electrochemical conditions. The fabrication of porous silicon and ion signals on DIOS-MS were examined as a function of silicon orientation, etching time, etchant, current flux, irradiation, pore size, and pore depth. We have also examined the effect of pre- and post-etching conditions for their effect on DIOS-MS. Finally, we could optimize the electrochemical conditions for the efficient performance of DIOS-MS in the analysis of small molecule such as amino acid, drug and peptides without any unknown noise or fragmentation.