• Title/Summary/Keyword: Porous media wall

Search Result 21, Processing Time 0.02 seconds

Numerical Analysis for Characteristics of Flow Fields and Disinfection Performances in the Clearwell with a Porous media Wall (정수지 내 유동 특성과 유공벽을 이용한 소독능 변화에 대한 수치 해석적 연구)

  • Lee, Suk Won;Rhee, Gwang Hoon;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.755-761
    • /
    • 2007
  • Disinfection performance in clearwell is generally measured by CT, which is expressed by $C{\times}T$. C is represented by disinfection concentration, and T is represented by $T_{10}$ which means 90% contact time in clearwell. In order to improve Disinfection performance, augmentation of $T_{10}$ is required. Guide wall has been generally used to improve $T_{10}$ because $T_{10}$ changes according to flow field. In this study, porous media is proposed instead of guide wall, and disinfection performance between guide wall and porous media wall are compared. Flow field and $T_{10}$ in each clearwell are investigated as well. Improved Disinfection performance appear in case of porous media wall compare to guide wall, and best performance occur in porosity factor ${\beta}$ 1e+4.

An Experimental Study on Vacuum Drying of Water-Saturated Porous Media (함수다공질층의 진공건조에 관한 실험적 연구 (Ⅰ))

  • Park, Hyeong-Jin;Kim, Gyeong-Geun;Kim, Myeong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.68-75
    • /
    • 1996
  • The vacuum drying characteristics of water-saturated porous media were studied experimentally. The water-saturated porous media, water-saturated sand layer, was heated by the isothermal bottom wall of the rectangular vessel. The vacuum drying rate and temperature distribution of the sand layer were measured and calculated under a variety of conditions of heated wall temperature, vacuum rate, and thickness of the test material. It was found that the drying rate due to the heat and mass teansfer is greatly influenced by the heated wall temperature, vacuum rate, and thickness of the test material.

  • PDF

An Experimental study on the Freezing Phenomena of Saturated Porous Media in a Rectangular Cavity (장방형내 함수 다공성 물질의 동결거동에 관한 실험적 연구)

  • Kim, B.C.;Kim, J.I.;Kim, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.386-394
    • /
    • 1991
  • Freezing of saturated porous media contained in a rectangular cavity has been studied experimentally. Water and different diameter glass beads consitituted the liquid and porous media. Solidification front shape, the effects of bead diameter and initial liquid temperature was investigated. When the hot wall temperature was below $4^{\circ}C$, the freezing rate was higher at the top than at the bottom due to the density inversion, but with increasing the hot wall temperature the freezing rate at the top was effected by the liquid temperature and was lower than at the bottom. With increasing the bead diameter, the difference of freezing rate between top and bottom was increased and depends on thermal conductivity. When the liquid temperature was low in the beginning, the freezing rate was high, but with increasing the time almost the same with those of high temperature liquid.

  • PDF

Numerical Study of Natural Convection in Porous Media Bounded by Short Vertical Annulus (단형 수직환형 다공성 물질에 있어서의 자연 대류에 대한 수치해석)

  • 윤종혁;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.979-990
    • /
    • 1989
  • Natural convection heat transfer has been investigated numerically in the vertical annulus filled withsaturated porous material for the aspect ratio less than unity. The inner wall of the annulus is exposed to constant heat flux condition and the outer wall is cooled to keep isothermal condition. The upper and the lower horizontal wall are assumed to be insulated. Under conditions ranging 50 .leq. Ra .leq. 10000, 1 .leq. RD .leq. 12, the characteristics of flow and heat transfer have been investigated. The results show that average Nusselt numbers increase when the radius ratio increases and the multicellular flows are not detected under the present conditions. Isothermal lines are plotted within the porous media. Temperatures of the inner wall with constant heat flux conditions and the local heat flux rate of the cooled outer wall with constant temperature are also obtained.

Numerical analysis in oscillating flow considering orientation of porous media regenerator (다공성 재생기의 방향성을 고려한 왕복유동 수치해석)

  • Yang, Mun-Heum;Park, Sang-Jin;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1668-1678
    • /
    • 1997
  • Numerical analyses were performed to investigate the characteristics of regenerator in oscillating flow by using moving boundary method and Darcy model. In this work, periodic adiabatic boundary condition was suggested as the boundary condition of adiabatic part so that the effects of the thermal inertia of the wall could be considered. In carrying out numerical analyses, two models were applied and compared. One called isotropic model has the same thermal conductivity in radial and axial directions within a porous media. The other called aeolotropic model has different conductivity in each directions. Isotropic model could not show the advantage of energy reduction which needs to maintain constant wall temperature difference between heater and cooler. But aeolotropic model could simulate the reduction of energy consumption.

A NUMERICAL STUDY ON FLOWS IN A FUEL TANK WITH BAFFLES AND POROUS MEDIA TO REDUCE SLOSHING NOISE (연료탱크 슬로싱 소음 저감을 위한 배플 및 다공성 물질 설치에 따른 유동해석 연구)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.68-76
    • /
    • 2009
  • The sloshing tank causes the instability of the fluid flows and the fluctuation of the impact pressure by the liquid on the tank. These flow characteristics inside the sloshing tank can generate the uncomfortable sloshing noise. In the present study, a numerical analysis for the reduction of a fuel tank sloshing noise was performed. To simulate the flow characteristics in a sloshing tank with partially filled liquid, a VOF method was used for interfacial flows by applying a momentum source term for the sloshing motion in a non-inertial reference frame. This numerical method was verified by comparing its results with the available experimental data. For the reduction of the sloshing noise, the horizontal and vertical baffles and porous media inside a sloshing tank were considered and numerically analyzed in the present study. For various installations of these baffles and porous media, the characteristics of the liquid behavior in the sloshing tank were obtained along with the impact pressure on the wall and the height of the free surface along the wall. These basic results can be used for the design of the actual vehicular fuel tank with the reduced sloshing noise.

Numerical Study on Convective Heat Transfer within a Vertical Annular Porous Material (다공성 물질의 환형수직원통내에서의 자연대류 열전달 수치해석)

  • Cha, Ki Up;Kim, Chong Bo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.2
    • /
    • pp.128-137
    • /
    • 1989
  • Numerical solutions for two-dimensional, steady, free convection are presented for a cylinder filled with saturated porous media. An annulus is bounded by inner wall with constant heat flux and two adiabatic horizontal walls with outer wall isothermally cooled. Governing equations are numerically solved for the range of Aspect Ratio 1 to 20, Radius Ratio, 1 to 20, and Rayleigh number, 50 to $10^4$ by Finite Difference method utilizing upwind scheme. Results are presented in terms of stream lines and isotherms, temperature distributions and local Nusselt numbers at the heated wall. Average Nusselt numbers are also presented for the comparisons.

  • PDF

Transient filling simulations in unidirectional fibrous porous media

  • Liu, Hai Long;Hwang, Wook-Ryol
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.71-79
    • /
    • 2009
  • The incomplete saturation and the void formation during the resin infiltration into fibrous porous media in the resin transfer molding process cause failure in the final product during its service. In order to better understand flow behavior during the filling process, a finite-element scheme for transient flow simulation across the micro-structured fibrous media is developed in the present work. A volume-of- fluid (VOF) method has been incorporated in the Eulerian frame to capture the evolution of flow front and the vertical periodic boundary condition has been combined to avoid unwanted wall effect. In the microscale simulation, we investigated the transient filling process in various fiber structures and discussed the mechanism leading to the flow fingering in the case of random fiber distribution. Effects of the filling pressure, the shear-thinning behavior of fluid and the volume fraction on the flow front have been investigated for both intra-tow and the inter-tow flows in dual-scale fiber tow models.

Study on the Natural Convection Heat Transfer Characteristics in the Air Duct

  • Kim, Y.K.;Lee, Y.B.;Park, S.K.;J.S. Hwang;H.Y. Nam
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.451-456
    • /
    • 1997
  • Temperature distribution measurements in the mockup apparatus of reactor vessel were performed to determine the effective thermal conductivity of porous media with different geometry and to obtain the experimental data for the heat transfer processes by natural convection occurring in the air duct. The temperature distributions at four separated sections with different arrangements of porous media have different slopes according to the geometrical configuration. From the measured temperature distribution, effective thermal conductivity have been derived using the least square fitting method. The test at air duct was performed to the high heat removal at 3.4kW/$m^2$ by the natural convection from the outer wall to the air. And also the temperature distributions in the air duct agree well with the 1/7th power-law turbulent temperature distribution. The obtained heat transfer data have been compared with the Shin's and Sieger's correlations.

  • PDF

Parametric study of porous media as substitutes for flow-diverter stent

  • Ohta, Makoto;Anzai, Hitomi;Miura, Yukihisa;Nakayama, Toshio
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.2
    • /
    • pp.111-125
    • /
    • 2015
  • For engineers, generating a mesh in porous media (PMs) sometimes represents a smaller computational load than generating realistic stent geometries with computer fluid dynamics (CFD). For this reason, PMs have recently become attractive to mimic flow-diverter stents (FDs), which are used to treat intracranial aneurysms. PMs function by introducing a hydraulic resistance using Darcy's law; therefore, the pressure drop may be computed by test sections parallel and perpendicular to the main flow direction. However, in previous studies, the pressure drop parallel to the flow may have depended on the width of the gap between the stent and the wall of the test section. Furthermore, the influence of parameters such as the test section geometry and the distance over which the pressure drops was not clear. Given these problems, computing the pressure drop parallel to the flow becomes extremely difficult. The aim of the present study is to resolve this lack of information for stent modeling using PM and to compute the pressure drop using several methods to estimate the influence of the relevant parameters. To determine the pressure drop as a function of distance, an FD was placed parallel and perpendicular to the flow in test sections with rectangular geometries. The inclined angle method was employed to extrapolate the flow patterns in the parallel direction. A similar approach was applied with a cylindrical geometry to estimate loss due to pipe friction. Additionally, the pressure drops were computed by using CFD. To determine if the balance of pressure drops (parallel vs perpendicular) affects flow patterns, we calculated the flow patterns for an ideal aneurysm using PMs with various ratios of parallel pressure drop to perpendicular pressure drop. The results show that pressure drop in the parallel direction depends on test section. The PM thickness and the ratio of parallel permeability to perpendicular permeability affect the flow pattern in an ideal aneurysm. Based on the permeability ratio and the flow patterns, the pressure drop in the parallel direction can be determined.