• Title/Summary/Keyword: Porous honeycomb filter

Search Result 2, Processing Time 0.016 seconds

Fabrication of Cordierite Honeycomb from Fly Ash

  • Kim, Sung-Jin;Park, Sung-Jin;Bang, Hee-Gon;Park, Sang-Yeup
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1009-1010
    • /
    • 2006
  • In this study, we attempt to synthesize the cordierite from the reaction of fly-ash, alumina, silicon dioxide, and magnesia powders. For the purpose of air purification, the honeycomb filter with porous cordierite was fabricated from the combination of synthetic cordierite and pore forming agent. Fabricated porous cordierite honeycomb was prepared with high porosity (58%), and good compressive strength (69MPa).

  • PDF

Pore Structure Modification and Characterization of Porous Cordierite with Chemical Vapor Infiltration (CVI) SiC Whisker (화학증착 탄화규소 휘스커에 의한 다공성 코디어라이트의 기공구조 개질 및 특성평가)

  • Kim, Ik-Whan;Kim, Jun-Gyu;Lee, Hwan-Sup;Choi, Doo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.2
    • /
    • pp.132-137
    • /
    • 2008
  • The main purpose of this study is enhancing the filtering efficiency, performance and durability of filter by growing SiC whiskers on cordierite honeycomb substrate. The experiment was performed by Chemical Vapor Infiltration (CVI) in order to control pore morphology of substrate. Increasing the mechanical strength of porous substrate is one of important issues. The formation of "networking structure" in the pore of porous substrate increased mechanical strength. The high pressure gas injection to the specimen showed that a little of whiskers were separated from substrate but additional film coating enhanced the stability of whisker at high pressure gas injection. Particle trap test was performed. More nano-particle was trapped by whisker growth at the pore of substrate. Therefore it is expected that the porous cordierite which deposited the SiC whisker will be the promising material for the application as filter trapping the nano-particles.