• Title/Summary/Keyword: Porous glass

Search Result 217, Processing Time 0.029 seconds

A Study on the Porous Glass-Ceramics in the Phosphate System (인산염계 다공질 결정화 유리에 관한 연구)

  • 박용완;현부성;김태호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.858-864
    • /
    • 1995
  • A porous glass-ceramics body was prepared in the phosphate system. The glass composition of 47.2CaO-22.2TiO2-30.6P2O5 (mol%) containing a few weight percent of ZrO2 was suitable for a mother glass of a porous glass-ceramics. The dense glass-ceramics body was made by a two-step heat treatment of the mother glass. The crystalline phases of the glass-ceramics were $\beta$-Ca3(PO4)2 and CaTi4(PO4)6. The $\beta$-Ca3(PO4)2 phase could be selectively leached out with HCl solution and thus a crystalline $\beta$-Ca3(PO4)2 skeleton was remained. The dimension and shape of the porous glass-ceramics were nearly the same as the those of the first formed glass. The specific surface area and average proe radius of the porous glass-ceramics were 19$m^2$/g and 22 nm, respectively.

  • PDF

Preparation of Porous Glass by the Sintering (소결법에 의한 다공질유리의 제조)

  • 박용완;이준영
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.957-968
    • /
    • 1994
  • Manufacturing process of porous glass by the filler method was studied. Commercial soda-lime-silicate glass powder was mixed with inorganic salt as the filler such as KCl, K2SO4, Na2SO4. Sintering shrinkages of mixed powders with the variation of sintering temperature were compared, and the effects of the fillers to shrinkages of mixed powder were increased in the order of Na2SO4${\mu}{\textrm}{m}$ of pore diameter were manufactured when the filler sizes 100~200 ${\mu}{\textrm}{m}$. The open pore volume of porous glass is determined by the quantity of filler and porous glasses having open pore volume between 30 and 70 vol% are available. Available sintering temperature range for preparation of porous glass is from the softening temperature of the glass powder to eutectic melting temperature of DTA curve of mixed powder.

  • PDF

Preparation of Porous Glass-Ceramics by the Sintering (소결법에 의한 다공질 결정화유리의 제조)

  • 박용완;이준영
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1218-1230
    • /
    • 1994
  • In manufacturing process of porous glass-ceramics by the filler method, the sintering behaviour of crystallizable glass powder mixed with various salts was studied and also the effects of precipitated crystal phases on the properties of porous glass-ceramics were investigated. Fine-grained crystallizable glass powder was homogeneously mixed with various slat having grain size 100~200 ${\mu}{\textrm}{m}$ and sintered for densification. After washing out the inorganic salt with distilled water, the porous sintered body was heat treated additionly for crystallization. The MgO-Al2O3-SiO2 base glass was used as crystallizable glass powder and the water soluble salts such as K2SO4 and MgSO4 were used as filler. When K2SO4 was used, leucite crystal phase was formed as a result of the ion exchange and porous glass-ceramics which exhibit high temperature resistance and high thermal expansion coefficient of 17$\times$10-6/$^{\circ}C$ could be obtained. On the contrary, when MgSO4 was used, only slight ion exchange is observed and $\mu$-cordierite and $\alpha$-cordierite crystal phases were formed and porous glass-ceramics which exhibit low thermal expansion coefficient schedule were determined with the results of DTA curves, thermal shrinkage curves and XRD patterns analysis. From DTA curves and thermal shrinkage curves, it was found that the sintering densification have been completed at the temperature range of exothermic peak for crystallization. The pore size distributions and pore diameters were measured by mercury porosimeter. The pore diameter of porous glass-ceramics was 10~15 ${\mu}{\textrm}{m}$ when 100~200${\mu}{\textrm}{m}$ grain size of K2SO4 was used and it was 25~30 ${\mu}{\textrm}{m}$ when the same grain size of MgSO4 was used. The porous glass-ceramics K2SO4 used shows bimodal pore size distribution and its porous skeleton structure was ascertained by SEM observation.

  • PDF

Porous Alkali Resistance Glass Preparation of ZrO2-SiO2 System by the Sol-Gel Method (졸-겔법에 의한 내알칼리성 다공질 ZrO$_2$-SiO$_2$계 유리 제조)

  • 신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.35-40
    • /
    • 1992
  • Porous glass in the ZrO2-SiO2 system containing up to 30 mol% zirconia were prepared from the mixed solutions of Zr(O.nC3H7)4 and partially prehydrolyzed TEOS by the sol-gel method. Pore characteristics, physical properties and alkali resistance were investigated. The gels converted into the porous glass by heating at $700^{\circ}C$, it was found that the glass like skeleton was already made up in lower temperature regions. The specific surface area of the porous glass was 227 $m^2$/g, average mean pore size was about 19$\AA$ and porosity was 19.2%, pore characteristics and physical properties depended on heating temperature. Alkali resistance of the porous glass increased as the zirconia content increased, because of the appearance of Zr-enriched layer at glass surface.

  • PDF

Comparison of Electro-Osmotic Pumps with Two Different Types of Porous Glass Frits (두 종류의 다공성 유리막을 이용한 전기삼투 펌프의 비교 연구)

  • Kwon, Kil-Sung;Park, Chul-Woo;Kim, Dae-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.379-383
    • /
    • 2011
  • Electro-osmotic pumps were fabricated by using two types of porous glass frits. The performance of these pumps was characterized in terms of maximum flow rate, current, and pressure using deionized water and 1 mM sodium tertraborate decahydrate buffer. Maximum flow rate and current when ROBU porous glass frits were used were higher than those when DURAN porous glass frits were used because of the high porosity of the ROBU glass frits. However, the maximum pressure when ROBU glass frits were used was similar to that when DURAN glass frits were used. The therrmodynamic efficiency of a pump with ROBU porous glass frits is approximately twice that of a pump with DURAN porous glass frits. Further, the maximum flow rate at maximum current in the case of ROBU porous glass frits is high. However, it is lower than the maximum pressure at maximum current in the case of DURAN porous glass frits. Further, in this study, we also verified the effectiveness of ROBU glass frits when high flow rate is required and of DURAN glass frits when a high pressure is required.

Control of Pore Characteristics of Porous Glass in the $ZrO_2.SiO_2$ System Prepared by the Sol-Gel Method (졸-겔법으로 제조한 $ZrO_2.SiO_2$다공질유리의 세공제어)

  • 신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.6
    • /
    • pp.485-491
    • /
    • 1993
  • Porous glass in the ZrO2.SiO2 system containning up to 30mol% zirconia were prepared by the sol-gel method from metal alkoxides and their pore characteristics with reaction parameters were investigated. The gels were made by hydrolyzing and condensation of the mixed metla alkoxides and were converted into the porous glass by heating up to $700^{\circ}C$. As a results, the mean pore radius became larger with increasing contents of HCl, H2O and hydrolysis temperature, and an alcohol with a large molecular weight for making the porous glass. In the case of 20ZrO2.80SiO2 porous glass with heated at $700^{\circ}C$, HCl and H2O content was 0.3mol and 4mol, the specific surface area was 284$m^2$/g, average mean pore radius was about 19.4$\AA$, porosity was 22.55% and pore characteristics depended on heating temperature.

  • PDF

Preparation of Porous Glass Membranes by the Phase-Separation Technique (상분리법에 의한 다공질 유리막의 제조)

  • 현상훈;최봉호
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.1
    • /
    • pp.59-65
    • /
    • 1988
  • To develop porous glass membranes used for a effective membrane-separation process, porous glasses and glass membranes were prepared from the sodium borosilicate parent glass by the phaseseparation technique and effects of heat-treatment and leaching conditions on their characteristics were investigated. The crack-free glass membranes could be fabricated from the 9.4 Na2-O-30.7 B2O3-59.2 SiO2-0.7 Al2O3(wt%) parent glass by heat-treatment at the lower temperature(550-570$^{\circ}C$) and for longer than 45 hrs for the phase separation, followed by leaching with 3N-HCl+60% ethylene glycol solution at 90$^{\circ}C$ over 25 hrs. Porous glasses prepared in this work showed large specific surface areas(400㎡/g) and narrow pore size distribution with the mean pore radius of 14${\AA}$ enough for the application as reverse osmosis membranes. The salt-rejection efficiency and product-flux of the glass membranes heat-treated at 570$^{\circ}C$ for 80 hrs were found to be 51.8% and 270cc/㎡. hr, respectively. This result suggests that the porous glass membranes fabricated in this study could be applied for the reverse osmosis process.

  • PDF

Preparation of Porous PLGA Microfibers Using Gelatin Porogen Based on a Glass Capillary Device (젤라틴 기공유도물질과 유리모세관 장치를 이용한 다공성 PLGA 미세섬유의 제조)

  • Kim, Chul Min;Kim, Gyu Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.63-67
    • /
    • 2016
  • We present a method of fabricating poly (lactic-co-glycolic acid) (PLGA) porous microfibers using a pore template. PLGA microfibers were synthesized using a glass capillary tube in a poly-(dimethylsiloxane) (PDMS) microfluidic chip. Gelatin solution was used as a porous template to prepare pores in microfibers. Two phases of PLGA solutions in different solvents-DMSO (dimethyl sulfoxide) and DCM (dichloromethane)-were used to control the porosity and strength of the porous microfibers. The porosity of the PLGA microfibers differed depending on the ratio of flow rates in the two phases. The porous structure was formed in a spiral shape on the microfiber. The porous structure of the microfiber is expected to improve transfer of oxygen and nutrients, which is important for cell viability in tissue engineering.

Synthesis of Sialon by Carbothermal Reduction of Porous Glass (다공질유리의 탄소 열적환원반응에 의한 Sialon의 합성에 관한 연구)

  • 김병호;이덕열;김왕섭;전형우;이근헌
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.771-782
    • /
    • 1989
  • Synthesis of $\beta$-Sialon powder was attempted with carbothermal reduction of porous glass. The porous glass was prepared by heat and hydrothermal treatments of 9.32 Li2O.46.5B2O3.37.2SiO2.6.98Al2O3 glass. Carbon pyrolyzed from propane gas was deposited on the porous glass, thereafter activated carbon was added as reducing agents. The synthesized $\beta$-Sialon powder was pressureless sintered at 175$0^{\circ}C$ for 1hr in N2 atmosphere. The characterization of the $\beta$-Sialon powder was performed with XRD, BET, SEM and particle size analysis. The sinterability and mechanical properties of the sintered bodies were investigated in terms of bulk density, M.O.R., fracture toughness, morphology of microstructure and etc. The reduction effect of deposited carbon was better than that of activated carbon mechanically added. The formation of SiC was precominant over that of Si2ON2 and $\beta$-Sialon owing to low partial pressure of N2 inside the pore, wehreas on the surface of porous glass the formation of Si2ON2 and $\beta$-Sialon were predominant. Thereafter, SiC reduced unreacted glass to be $\beta$-Sialon. Single phase of $\beta$-Sialon(Z=1.92) was obtained from PGA porous glass having the largest pore radius by the simultaneous reduction and nitridation method at 145$0^{\circ}C$ for 5hrs. The bulk density, M.O.R., and KIC of the sitered body are 3.17g/cc, 434.4MPa and 4.1MPa.m1/2, respectively.

  • PDF

Characteristics of Ammonia Removal in Biofilters Inoculated with Earthworm Cast. (분변토를 접종한 바이오필터의 암모니아 제거 특성)

  • 류희욱;한희동;조경숙
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.73-78
    • /
    • 2002
  • Four inorganic packing materials (zeocarbon, porous celite, porous glass, zeolite) and a earthworm cast were compared with regard to the removal of ammonia in a biofilter inoculated with earthworm cast. Physical adsorption of ammonia on packing materials were negligible except zeocarbon (23.5 g-$NH_3$/kg), and cell immobilization capacity have similar values irrespective of packing materials. Pressure drops of the packed bed were in order of earthworm cast zeocarbon zeolite porous glass porous. The maximum elimination capacity ($g-Nkg^{-1}$ $d^{-1}$ ) of ammonia, which were based on a unit volume of packing material, were in order of zeocarbon (526) earthworm cast (220) porous celite (93) > zeolite (68) > porous glass (53). By using kinetic analysis, the maximum removal rates ($V_{m}$ ) and the saturation constant ($K_{s}$ ) for ammonia were determined, and zeocarbon showed superior performance among the five materials.