• Title/Summary/Keyword: Porous coating layer

Search Result 132, Processing Time 0.03 seconds

Performance of Nano Ceramic Filter for the Removal of Ultra Fine Particles (초미세입자 제거를 위한 나노세라믹 필터의 성능 평가)

  • Kim, Jong-Won;Ahn, Young-Chull;Yi, Byeong-Kwon;Jeong, Hyeon-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.751-756
    • /
    • 2009
  • In the perspective of saving energy in buildings, the high performance of insulation and air tightness for improving the heating and the cooling efficiency, has brought economically positive effects. However, these building energy saving technologies cause the lack of ventilation, which is the direct cause of increasing the indoor contaminants, and is also very harmful to the residents, because they spend over 90% of their time indoors. Therefore, the ventilation is important to keep the indoor environment clean and it can also save the energy consumption. In this study, a HEPA type nano ceramic filter is designed as a passive ventilation system to collect airborne particles and to supply fresh outdoor air. The double layer filter, which has $30{\mu}m$ in diameter at the conditions of 10wt% of concentration and 3kV/cm of the electric intensity, is produced by electrospinning. The filtration coating technology is confirmed in the solution with $SiO_2$ nano particles using polymer nano fibers. Also double layer filters are coated with $SiO_2$ nano particles and finally the porous construction materials are made by sintering in the electric furnace at $200{\sim}1400^{\circ}C$. The efficiency is measured 96.67% at the particle size of $0.31{\mu}m$, which is slightly lower than HEPA filter. However the efficiency is turned out to be sufficient.

  • PDF

Gas Permeation Characteristics of Silica Membrane Prepared by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법에 의해 합성한 실리카 막의 기체 투과 특성)

  • Lee Kew-Ho;Youn Min-Young;Park Sang-Jin;Lee Dong-Wook;Sea Bongkuk
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.105-113
    • /
    • 2005
  • Silica membranes were prepared on a porous metal sheet by ultrasonic spray pyrolysis method for gas separation at high temperatures. In order to improve the permselectivity, silica was deposited in the sol-gel derived $silica/\gamma-alumina$ intermediate layer by pyrolysis of tetraethyl orthosilicate (TEOS) at 873 K. The pyrolysis with forced cross flow through the porous wall of the support was very effective in plugging mesopores, Knudsen diffusion regime, that were left unplugged in the membranes. At permeation temperature of 523 K, the silica/alumina composite membrane showed $H_2/N_2$ and water/methanol selectivity as high as 17 and 16, respectively, by molecular sieve effect.

Synthesis of Silica Membranes on a Porous Stainless Steel by Sol-Gel Method and Effect of Preparation Conditions on Their Permselectivity

  • Lee, Dong-Wook;Nam, Seung-Eun;Sea, Bong-Kuk;Ihm, Son-Ki;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1371-1378
    • /
    • 2004
  • A porous stainless steel (SUS) as a substrate of silica composite membranes for hydrogen purification was used to improve mechanical strength of the membranes for industrial application. The SUS support was successfully modified by using submicron Ni powder, $SiO_2$ sols with particle size of 500 nm and 150 nm in turns. Silica top layer was coated on the modified supports under various preparation conditions such as calcination temperature, dipping time and repeating number of dipping-drying process. The calcination temperature for proper sintering was between H ttig temperature and Tamman temperature of the coating materials. Maximum hydrogen selectivity was investigated by changing dipping time. As repeating number of dipping-drying process increased, permeances of nitrogen and hydrogen were decreased and $H_2/N_2$ selectivity was increased due to the reduction of non-selective pinholes and mesopores. For the silica membrane prepared under optimized conditions, permeance of hydrogen was about $3\;{\times}\;10^{-5}\;cm^3{\cdot}cm^{-2}{\cdot}s^{-1}{\cdot}cmHg^{-1}$ combined with $H_2/N_2$ seletivity of about 20.

Characteristics and oxidation behavior of the hybrid-HVOF sprayed $Cr_3C_2$-7wt%(NiCr) coatings depending on $H_2/O_2$ ratio ($H_2/O_2$ 비에 따른 Hybrid HVOF 용사된 $Cr_3C_2$-7wt%(NiCr) 용사층의 특성 및 산화거동)

  • 김병희;서동수
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.126-135
    • /
    • 1997
  • $H_2/O_2$ 비에 따른 Hybrid HVOF 용사된 $Cr_3C_2$-7wt%(NiCr) 용사층의 특성 및 산화거동 This study was performed to investigate the influence of fuel/oxygen ratio (F/O=3.2, 3.0, 2.8) on the characteristics and the oxidation behavior of the hybrid-HVOF sprayed $Cr_3C_2$-7wt%NiCr coatings. Decomposition and the oxidation of the $Cr_3C_2$was occured during spraying. The degree of transformation from $Cr_3C_2$to $Cr_7C_3$ was increased with decreasing the F/O ratio. The microstructural differences of the as sprayed coating with F/O ratio can not be distinguished, However, large pores were diminished and then the coatings became dense by heat treatment. Microhardness of the as-sprayed specimen which sprayed with F/O=3.0 condition was hightest ($Hv_{300}$=1140) and the hardness was increased to 1500 after heat treatment at $600^{\circ}C$ for 50hrs in air. It was supposed that hardness was increased due to the formation of $Cr_2O_3$ within $Cr_3C_2$/$Cr_7C_3$matrix and the densification of coating layer during heat treatment. Apparent activation energy for oxidation was varied from 21.2 kcal$mol^{-1}K^{-1}$ to 23.8 kcal$mol^{-1}K^{-1}$ with respect to the F/O ratio. The surface morphology was changed to porous and oxide chusters were grown after oxidation $1000^{\circ}C$ for 50 hours by the aggressive evolution of gas phase ($CrO_3$ and$CO_2$). The oxide cluster was composed of Ni and Cr.

  • PDF

A study on the fabrication technology of ceramic interconnect for the SOFC by wet process (습식법을 이용한 고체산화물 연료전지용 세라믹 연결재 제조 특성연구)

  • 이길용;김종희;송락현;백동현;정두환;신동열
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.200-200
    • /
    • 2003
  • 고체산화물 연료전지(SOFC)에서 사용되는 연결재의 주 기능은 각 단위 셀의 연료극과 다음 셀의 공기극을 전기적으로 연결하여, 공기와 사용연료의 분리역할을 하기 위하여 사용된다. SOFC용 연결재는 다른 구성요소 소재보다, 높은 전자 전도성, 낮은 이온전도성, 우수한 기계 적강도가 요구되며, SOFC는 고온에서 작동되기 때문에, 상온에서 작동온도까지 다른 요소 소재들과 유사한 열팽창계수와 물리, 화학적으로 안정성이 요구된다. 현재 연결재 제조기술은 EVD, CVD, plasma spraying, tape casting 등 다양하게 연구되고 있으며, 본 연구는 세라믹 연결재 증착방법 중 저렴한 비용으로 대량 생산이 용이한 습식법(dip coaling)을 적용하여, 연료극 지지체식 flat-tube형 고체산화물 연료전지의 지지체를 위해 세라믹 연결재를 제조하고, 그 특성을 연구하였다. 세라믹 연결재로써 선정한 합성조성은 LaCr $O_3$에 Ca이 치환 고용된 L $a_{0.6}$C $a_{0.41}$Cr $O_3$으로 pechini법으로 합성하였다. 합성된 조성은 100$0^{\circ}C$에서 5시간 하소후 가속 Ball Milling하여 0.5$\mu\textrm{m}$의 평균입자크기를 얻을 수 있었다. XRD 상분석결과 perovskite상 (L $a_{1-x}$ Ca/x/Cr $O_3$)과 CaCr $O_4$를 얻을 수 있었다. slurry를 제조하여 막의 밀착성을 증진시키기 위해 sand blasting시킨 flat tube지지체에 진공펌프를 이용하여 소재내부와 외부의 압력차로 dip coating한 후, 140$0^{\circ}C$로 소결 하였다. coating 결과 박리현상은 없었으나, 표면과 단면의 SEM분석결과 다소 porous한 박막층이 형성되었으며, Ca이온이 지지체로 permeation되는 현상이 발생하였다. 이와 같은 결과로부터 보다 치밀한 박막생성을 위해, slurry 제조조건을 변화시켰으며, Ca이온의 migration을 막기 위해 barrier layer를 이용하였다 완전 소결된 지지체는 가스투과도와 전기전도도측정을 통하여 특성을 평가하였다.였다.다.

  • PDF

Preparation of Thin Film Electrolyte for Solid Oxide Fuel Cell by Sol-Gel Method and Its Gas Permeability (졸-겔법을 이용한 고체산화물연료전지의 전해질 박막 제조 및 가스 투과도)

  • Son, Hui-Jeong;Lee, Hye-Jong;Lim, Tak-Hyoung;Song, Rak-Hyun;Peck, Dong-Hyun;Shin, Dong-Ryul;Hyun, Sang-Hoon;Kilner, John
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.827-832
    • /
    • 2005
  • In this study, thin electrolyte layer was prepared by 8YSZ ($8mol\%$ Yttria-Stabilized Zirconia) slurry dip and sol coating onto the porous anode support in order to reduce ohmic resistance. 8YSZ polymeric sol was prepared from inorganic salt of nitrate and XRF results of xerogel powder exhibited similar results $(99.2\pm1wt\%)$ compared with standard sample (TZ-8YS, Tosoh Co.). The dense and thin YSZ film with $1{\mu}m$ thickness was synthesized by coating of 0.7M YSZ sol followed by heat-treatment at $600^{\circ}C$ for 1 h. Thin film electrolyte sintered at $1400^{\circ}C$ showed no gas leakage at the differential pressure condition of 3 atm.

Preparation and Electrochemical Performance of Electrode Supported La0.75Sr0.25Ga0.8Mg0.16Fe0.04O3-δ Solid Oxide Fuel Cells

  • Yu, Ji-Haeng;Park, Sang-Woon;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.479-484
    • /
    • 2011
  • In this paper, investigations of thick film $La_{0.75}Sr_{0.25}Ga_{0.8}Mg_{0.16}Fe_{0.04}O_{3-{\delta}}$ (LSGMF) cells fabricated via spin coating on either NiO-YSZ anode or $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_3$ (LSGF) cathode substrates are presented. A La-doped $CeO_2$ (LDC) layer is inserted between NiO-YSZ and LSGMF in order to prevent reactions from occurring during co-firing. For the LSGF cathode-supported cell, no interlayer was required because the components of the cathode are the same as those of LSGMF with the exception of Mg. An LSGMF electrolyte slurry was deposited homogeneously on the porous supports via spin coating. The current-voltage characteristics of the anode and cathode supported LSGMF cells at temperatures between $700^{\circ}C$ and $850^{\circ}C$ are described. The LSGF cathode supported cell demonstrates a theoretical OCV and a power density of ~420 mW $cm^2$ at $800^{\circ}C$, whereas the NiO-YSZ anode supported cell with the LDC interlayer demonstrates a maximum power density of ~350 mW $cm^2$ at $800^{\circ}C$, which decreased more rapidly than the cathode supported cell despite the presence of the LDC interlayer. Potential causes of the degradation at temperatures over $700^{\circ}C$ are also discussed.

Separation of MeOH/MTBE mixtures through chitosan composite membranes using pervaporation

  • Woo, Dong-Jin;Nam, Sang-Yong;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.62-64
    • /
    • 1996
  • Chitin, which is obtained mainly from the cuticle of a marine crustacean, has recently aroused great interest in its industrial and biomedical applications. Chitosan, deacetylated form of chitin, appears to be more useful for biomedical application and dehydration of aqueous solutions than chitin, since it has both hydroxyl and amino groups that can be modified easily. Amino groups on chitosan reacts with dialdehyde to form a Schiff base and then crosslinked, and can be easily neutralized with sulfuric acid and metal ions. Polyfunctional metal ions can form a metal-polyelectrolyte complexes with chitosan. Membranes used in modules so far working in industrial pervaporation plants are generally of composite type. This composite membrane was prepared by coating a porous polysulfone ultrafiltration membrane support of definite structure with a thin, dense layer of permselective chitosan. To apply industrial scale pervaporation process for dehydration of aqueous ethanol and isopropanol, chitosan composite membranes were prepared and tested at various conditions.

  • PDF

Novel Composite Membranes Comprising Silver Salts Physically Dispersed in Poly(ethylene-co-propylene) for the Separation of Propylene/Propane

  • Kim, Jong-Hak;Min, Byoung-Ryul;Kim, Yong-Woo;Kang, Sang-Wook;Won, Jong-Ok;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.343-347
    • /
    • 2007
  • Novel composite membranes, which delivered high separation performance for propylene/propane mixtures, were developed by coating inert poly(ethylene-co-propylene) rubber (EPR) onto a porous polyester substrate, followed by the physical distribution of $AgBF_4$. Scanning electron microscopy-wavelength dispersive spectrometer (SEM-WDS) revealed that silver salts were uniformly distributed in the EPR layer. The physical dispersion of the silver salts in the inert polymer matrix, without specific interaction, was characterized by FT-IR and FT-Raman spectroscopy. The high separation performance was presumed to stem from the in-situ dissolution of crystalline silver ionic aggregates into free silver ions, which acted as an active propylene carrier within a propylene environment, leading to facilitated propylene transport through the membranes. The membranes were functional at all silver loading levels, exhibiting an unusually low threshold carrier concentration (less than 0.06 of silver weight fraction). The separation properties of these membranes, i.e. the mixed gas selectivity of propylene/propane ${\sim}55$ and mixed gas permeance ${\sim}7$ GPU, were stable for several days.

Frost Prevention of Fin-Tube Heat Exchanger by Spreading Antifreezing Solution (부동액 도포에 의한 핀-튜브 열교환기 착상방지)

  • Oh, Sang-Youp;Chang, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.477-485
    • /
    • 2006
  • A study on frost prevention of fin-tube heat exchanger is experimently performed by spreading antifreezing solution on heat exchanger surface. It is desirable that the antifreezing solution spreads completely on the surface forming thin liquid film to prevent frost nucleation and crystal growth and to reduce the thermal resistance across the liquid film. A small amount of antifreezing solution falls in drops on heat exchanger surface using two types of supplying devices, and a porous layer coating technique is adopted to enhance the wettedness of antifreezing solution on the surface. It is observed that the antifreezing solution liquid film prevents fin-tube heat exchanger from frosting, and heat transfer performance does not degrade through the frosting tests. The concentration of supplied antifreezing solution can be determined by heat transfer analysis of the first row of heat exchanger to avoid antifreezing solution freezing due to dilution by moisture absorption.