• Title/Summary/Keyword: Porous alumina

Search Result 214, Processing Time 0.026 seconds

Fabrication of Porous Al2O3 Ceramics Using Thermoplastic Polymer (열가소성 고분자를 이용한 다공질 알루미나의 제조)

  • 이상진;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.513-517
    • /
    • 2004
  • Porous alumina ceramics with aligned plate-shaped pores were fabricated by using thermoplastic microsphere in order to show the anisotropy in thermal conductivity. The mixed powder of alumina and microsphere was pressed under 15 MPa till 20$0^{\circ}C$ to deform polymer into platelet-shape and sintered at 1,00$0^{\circ}C$ for 1 h. The sintered specimen with 10 wt% microsphere has 45.3% porosity and the bending strength of 44 MPa. The microstructural investigation confirmed the pore structure of platelet-shape, the thermal conductivities for vertical and parallel directions are 3.803 W/mK and 7.818 W/mK, respectively, the ratio between two directions exceeds 2.

Porous Alumina/Mullite Layered Composites with Unidirectional Pore Channels and Improved Compressive Strength (일축배향 기공채널과 향상된 압축강도를 갖는 다공질 알루미나/뮬라이트 층상 복합체)

  • Kim, Kyu Heon;Kim, Tae Rim;Kim, Dong Hyun;Yoon, Seog Young;Park, Hong Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • Three-layer porous alumina-mullite composites with a symmetric gradient porosity are prepared using a controlled freeze/gel-casting method. In this work, tertiary-butyl alcohol (TBA) and coal fly ash with an appropriate addition of $Al_2O_3$ were used as the freezing vehicle and the starting material, respectively. When sintered at $1300-1500^{\circ}C$, unidirectional macro-pore channels aligned regularly along the growth direction of solid TBA were developed. Simultaneously, the pore channels were surrounded by less porous structured walls. A high degree of solid loading resulted in low porosity and a small pore size, leading to higher compressive strength. The sintered porous layered composite exhibited improved compressive strength with a slight decrease in its porosity. After sintering at $1500^{\circ}C$, the layered composite consisting of outer layers with a 50 wt% solid loading showed the highest compressive strength ($90.8{\pm}3.7MPa$) with porosity of approximately 26.4%.

Preparation for Porous Ceramics Using Low Grade Clay (저급점토를 이용한 다공성 세라믹스 제조)

  • 한상목;신대용;강상규
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.575-582
    • /
    • 1998
  • Sutiability of Jungsan clay shale dolomite sludge Anyang feldspar and alumina as raw materials for light-weight porous ceramics was examined. In order to find optimum manufacturing conditions compositions heating temperatuers and heating times were varied and their effects on physical properties were measured and bloating mechanism was investigated. Jungsan clay seems suitable as raw material to make the light-weight constructional materials with 5wt% of ANyang feldspar and alumina added in calcined clay (800$^{\circ}C$) having bulk density of 0.45g/cm3 water absorption of 1.34% and compressive strength of 85kg/cm2 rapid-heated at 1200$^{\circ}C$ for 30min. It is suggested that bloating mechanism depends on the difference of tem-peratures between the inside and outside in specimen the remained gases in interstices can bloat by the li-quid phase of surface with high viscosity and gas pressure at elevated temperature.

  • PDF

Synthesis of Bimodally Porous γ-Alumina Granules by Sol-Gel/Oil-Drop Method (솔-젤/Oil-Drop법을 이용한 이중 다공성 γ-알루미나 그래뉼의 제조)

  • Choi, Junseo;Kim, Jinsoo;Lee, Tai-Gye
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.111-115
    • /
    • 2007
  • Bimodally porous ${\gamma}$-alumina granules, including mesopores (2~50 nm) and macropores (>50 nm), were prepared by sol-gel and oil-drop method. Mesopores are made from the voids among the alumina crystallites, while macropores are from the space of the decomposed PS particles used as physical templates during the granulation process. The product ${\gamma}$-alumina granules with the average diameter of 2 mm were characterized by FE-SEM, XRD, FT-IR, $N_2$ porosimetry, and universal mechanical testing system.

Preparation of Porous Gold for Sensor Applications (센서 응용을 위한 다공성 골드의 제조)

  • Kim, Young-Hun;Kim, He-Ro;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.32-37
    • /
    • 2008
  • For a development of U-safety system, liquid/gas-sensors that are easy to carry and install in any place are needed. Therefore, in this work, we prepared porous gold using a templating method with nanoporous alumina, and it was used as sensing materials and electrode. The resulting materials showed high purity macroporous structure with $200{\sim}300\;nm$ of window-pore and $4.8\;m^2/g$ of surface area. Because porous gold had good electric conductivity, convenience to measure the change of electric resistivity and good reproducibility, it could be used as potential sensing materials. As a proof-of-concept test, the detection test for mercury ion was carried out.

  • PDF

Thickness-dependent Film Resistance of Thin Porous Film (얇은 다공 구조 박막에서의 두께에 따른 박막 저항 변화)

  • Song, A-Ree;Kim, Chul-Sung;Kouh, Tae-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.6-10
    • /
    • 2012
  • We have observed the change in the film resistance of thin nickel film up to 13 nm, which is deposited on a porous anodic alumina substrate, prepared by two-step anodization technique under phosphoric acid. The resulting film grows as a porous film, following the pore structure on the surface of the alumina substrate, and the value of the resistance lies above $150k{\Omega}$ within the range of thickness studied here, decreasing very slowly with the film thickness. The observed resistance value is much higher than the reported value of a uniform film at the same thickness. Since the observed value of the surface coverage with the pores is smaller than the critical value, expected from the percolation theory, the pore structure limits the formation of conduction channel across the film. In addition, by comparing to the typical model of thickness-dependent resistivity, we expect that the scattering at the pore edge further increases the film resistance.

Separation of ethanol/water mixtures with hydrophobic alumina membrane in vapor permeation (소수성 알루미나막의 증가투과에 의한 에탄올의 분리)

  • Lee, Sang-In;Song, Kun-Ho;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.179-184
    • /
    • 2000
  • The surface of porous alumina membrane was modified with silane coupling agent in order to enhance hydrophobicity. The contact angle of water to the surface-modified alumina membrane was greater than $90^{\circ}$. The surface-modified membrane was tested in vapor permeation for the concentration of aqueous ethanol. With the increase of ethanol concentration in the feed, permeation flux increased due to the greater affinity of ethanol with surface-modified alumina membrane than that of water. The experimental results showed that the permeation rate of surface-modified alumina membrane was 15~1000 times greater than that of polymer membranes.

  • PDF

Alumina Templates on Silicon Wafers with Hexagonally or Tetragonally Ordered Nanopore Arrays via Soft Lithography

  • Park, Man-Shik;Yu, Gui-Duk;Shin, Kyu-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.83-89
    • /
    • 2012
  • Due to the potential importance and usefulness, usage of highly ordered nanoporous anodized aluminum oxide can be broadened in industry, when highly ordered anodized aluminum oxide can be placed on a substrate with controlled thickness. Here we report a facile route to highly ordered nanoporous alumina with the thickness of hundreds-of-nanometer on a silicon wafer substrate. Hexagonally or tetragonally ordered nanoporous alumina could be prepared by way of thermal imprinting, dry etching, and anodization. Adoption of reusable polymer soft molds enabled the control of the thickness of the highly ordered porous alumina. It also increased reproducibility of imprinting process and reduced the expense for mold production and pattern generation. As nanoporous alumina templates are mechanically and thermally stable, we expect that the simple and costeffective fabrication through our method would be highly applicable in electronics industry.

Fabrication of Water-based Ceramic Tapes Using PVP As Binder (PVP 결합제를 이용한 수계용 세라믹테이프의 제조)

  • 박일석;조유정;이명현;최세영;이득용;김대준
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1060-1066
    • /
    • 2001
  • Water-based alumina tapes for application of all-ceramic crowns were fabricated using PVP as binder that is biocompatible, highly soluble in solvents, and no residue leftafter firing. Tensile strength of alumina tapes was governed by binder/(binder+plasticizer)ratio. On the other hand, linear shrinkage and density were determined by alumina/(alumina+organic) ratio. Composite for all-ceramic crowns, prepared by infiltration of a glass into sintered porous alumina, showed high flexural strength which increased with increasing sintered density.

  • PDF

Effects of Heat Treatments of Aluminum Substrate on Nanopore Arrays in Anodic Alumina (열처리가 알루미나 나노기공의 배열에 미치는 영향)

  • Cho, S.H.;Oh, H.J.;Kim, S.S.;Joo, E.K.;Yoo, C.W.;Chi, C.S.
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.856-859
    • /
    • 2002
  • To investigate effects of heat treatments including grain size control in substrate aluminum on nanopore arrays in anodic alumina template, aluminum was heat treated at $500^{\circ}C$ for 1h. The heat treated aluminum was anodized by two successive anodization processes in oxalic solution and the nanopore arrays in anodic alumina layer were studied using TEM and FE-SEM. The highly ordered porous alumina templates with 110 nm interpore distance and 40 nm pore diameter have been observed and the pore array of the anodic alumina has a uniform and closely-packed honeycomb structure. In the case of alumina template obtained from heat treated aluminum substrate, the well- ordered nanopore region in anodic alumina increased and became more homogeneous compared with that from non-heattreated one.