• Title/Summary/Keyword: Porous Metal

Search Result 471, Processing Time 0.022 seconds

Iron Based PM Cellular Materials-Manufacturing, Properties and Applications

  • Stephani, Gunter;Gohler, Hartmut;Quadbeck, Peter;Studnitzky, Thomas
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.99-100
    • /
    • 2006
  • Cellular metals based on Iron have been intensively investigated during the last two decades. Because of the significant decreasing of the structural density of Iron based cellular structures, numerous technologies have been developed for their manufacturing. Besides the tremendous weight reduction a combination with other properties like energy and noise absorption, heat insulation and mechanical damping can be achieved. This contribution will give an overview about the latest state in Iron based cellular materials, including technologies in manufacturing, properties and potential applications.

  • PDF

Removal of metal ions during permeatin across the ion-exchange porous membrane (다공성 이온 교환막의 투과법에 의한 금속이온의 제거)

  • Jung, Kum-yeun;Kim, min
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.130-132
    • /
    • 1998
  • 정밀여과막(MF)막은 $0.1~1\mum$정도의 공경을 가지고 있는 막으로 산업이나 생활분야에서 널리 사용되고 있다. 이러한 정밀여과막에 이온교환기를 부여 시키므로써, 필요로하는 금속이온이나 단백질을 흡착할 수 있는 기능성 분리막이 제조 가능하다. 방사선프라프트 중합법은 고분자를 개질, 수식 또는 기능화시키는 수법으로 사용되고 있다. 본 실험에서는 방사선그라프트중합법을 사용하여 폴리에틸렌 정밀여과막에 에폭시기를 가지는 glycidyl methacrylate(GMA)를 그라프트 중합시킨 후 이온 교환기를 도입하여, 얻어진 막의 특성에 대해 고찰하였다. 본실험의 목적은 다음과 같다. (1) 폴리에틸렌 정밀여과 막에 방사선그라프트 중합법을 사용하여 이온교환기를 도입시키는 반응조건을 검토한다. (2) 도입된 이온교환기에 다른 막의 투과 성능을 조사한다. (3) 투과법에 의한 금속이온의 흡착성능을 조사한다. 여기서, 이온교환기로서는 술폰산(sodium sulfite:$SO_3H$)을 사용하였다.

  • PDF

A Study on the Pd-Ni Alloy Hydrogen Membrane Using the Sputter Deposition (스퍼터 증착 방식으로 제조된 Pd-Ni 합금 수소 분리막 연구)

  • Kim Dong-Won;Park Jeong-Won;Kim Sang-Ho;Park Jong-Su
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.5
    • /
    • pp.243-248
    • /
    • 2004
  • A palladium-nikel(Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support formed with nickel powder. Plasma surface treatment process is introduced as pre-treatment process instead of HCI activation. Pd coating layer was prepared by dc magnetron sputtering deposition after $H_2$ plasma surface treatment. Palladium-nickel alloy composite layer had a fairly uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature of 773 K and pressure of 2.2psi. The hydrogen permeance was 6 ml/minㆍ$\textrm{cm}^2$ㆍatm and the selectivity was 120 for hydrogen/nitrogen($H_2$/$N_2$) mixing gases at 773 K.

Application of a Membrane Desolvator to the Analysis of Organic Solvents in Inductively Coupled Plasma Atomic Emission Spectrometry

  • Lee, J. S.;Lim, H. B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1040-1044
    • /
    • 1999
  • A micro porous PTFE membrane desolvator (MMD) was built and evaluated for the on-line removal of organic solvents to facilitate the determination of trace metal contaminants in the solvents by ICP-AES. Three organic solvents, isopropyl alcohol (IPA), methanol, and dimethy sulfoxide (DMSO) were studied. The MMD reduced organic solvent concentration in the sample aerosol stream by 82% to 89%, as indicated by monitoring C(I) emission. Net signal intensity of Fe, Al, and Cu was increasing with higher organic solvent concentration, with the rate of increase being solvent dependent. The signal intensities for Mg and Pb followed the trend with the C(I) signal. Changing the sweep gas flow rate affected the optimum signal intensity. Wine samples were analyzed by the method of standard addition. The concentrations of B, Al, and Mg were determined with a relative precision of less than 2.3%.

Development of Artificial Intelligence Constitutive Equation Model Using Deep Learning (딥 러닝을 이용한 인공지능 구성방정식 모델의 개발)

  • Moon, H.B.;Kang, G.P.;Lee, K.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.4
    • /
    • pp.186-194
    • /
    • 2021
  • Finite element simulation is a widely applied method for practical purpose in various metal forming process. However, in the simulation of elasto-plastic behavior of porous material or in crystal plasticity coupled multi-scale simulation, it requires much calculation time, which is a limitation in its application in practical situations. A machine learning model that directly outputs the constitutive equation without iterative calculations would greatly reduce the calculation time of the simulation. In this study, we examined the possibility of artificial intelligence based constitutive equation with the input of existing state variables and current velocity filed. To introduce the methodology, we described the process of obtaining the training data, machine learning process and the coupling of machine learning model with commercial software DEFROMTM, as a preliminary study, via rigid plastic finite element simulation.

Research Progress in Membrane and Catalyst for Highly Selective Chemiresistive Gas Sensors (저항변화식 가스센서 선택성 향상을 위한 멤브레인 및 촉매 연구동향)

  • Jang, Ji-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.11-17
    • /
    • 2022
  • Direct exposure to toxic and hazardous gases has always been considered as the most pervasive problem worldwide, leading to a gradual increase in the number of asthma patients due to NOx/SOx gases inhaling and exposure to 50 ppm formaldehyde gases. Therefore, the development of accurate gas sensors is a key issue for resolving these problems. To address such issues, the development of membranes for selective filtering of target molecules as well as nanocatalyst for enhancing the sensing selectivity is highly crucial. In this review, the research progress for porous membrane materials (e.g. MOFs, and graphene) and nanocatalyst technology for the development of selective and accurate gas sensors will be discussed.

Characterion of Calcium Phosphate Films Grown on Surgicl Ti-6AI-4V By Ion Beam Assisted Deposition

  • Lee, I-S.;Song, J-S.;Choi, J-M;Kim, H-E.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.30-36
    • /
    • 1998
  • The plasma-spray technique is currently the most frequently used method to produce calcium phosphate coatings. Hydroxyapatite(HAp), one form of calcium phosphate, is preferred by its ability to form a direct bond with living bone, resulting in improvements of implant fixation and faster bone healing. Recently, concerns have been raised regarding the viable use and long-term stability of plasma-spray HAp coatings due to its nature of comparatively thick, porous, and poor bonding strength to metal implants. Thin layers (maximum of few microns) of calcium phosphate were formed by an e-beam evaporation with and without ion bombardments. The Ca/P ration of film was controlled by either using the evaporants having the different ration of Ca/P with addition of CaO, or adjusting the ion beam assist current. The Ca/P ration had great effects on the structure formation after heat treatment and the dissolution bahavior. The calcium phosphate films produced by IBAD exhibited high adhesion strength.

  • PDF

Computational mathematical modeling of the nonlinear vibration characteristics of AFG truncated conical nano pipe based on the nonlocal strain gradient theory

  • Zhang, Ruihua;Cao, Yiqing
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.599-615
    • /
    • 2022
  • In the present paper, the numerical dynamic analysis of a functionally graded nano-scale nonuniform tube was investigated according to the high-order beam theory coupled with the nonlocal gradient strain theory. The supposed cross-section is changed along the pipe length, and the material distribution, which combines both metal and ceramics, is smoothly changed in the pipe length direction, which is called axially functionally graded (AFG) pipe. Moreover, the porosity voids are dispersed in the cross-section and the radial pattern that the existence of both material distribution along the tube length and porosity voids make a two-dimensional functionally graded (2D-FG) truncated conical pipe. On the basis of the Hamilton principle, the governing equations and the associated boundary conditions equations are derived, and then a numerical approach is applied to solve the obtained equations.

The Corrosion Protection Performance of Al and Al-5%Mg Coatings Deposited on Steel Surface by Arc Thermal Metal Spray (강재 표면에 아크 금속 용사된 Al 및 Al-5 % Mg 코팅의 방지 성능)

  • Adnin, Raihana Jannat;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.140-141
    • /
    • 2021
  • Arc thermal spray process is widely used to protect the steel from corrosion and abrasion. In the present study, two different coatings i.e. Al and Al-5%Mg were used to compare their corrosion resistance performance and the effect of 5% Mg addition in the properties of deposited coating. The SEM results showed the more compact and less porous morphology of Al-5%Mg coating compared to Al. The corrosion resistance performance of both deposited coatings was studied in artificial ocean water with exposure periods and results are compared. The total impedance values of Al-5%Mg at 0.01 Hz exhibited highest with exposure periods might be attributed to the coating and corrosion products nature and morphology compared to Al coating.

  • PDF

Intelligent big data analysis and computational modelling for the stability response of the NEMS

  • Juncheng Fan;Qinyang Li;Sami Muhsen;H. Elhosiny Ali
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.139-149
    • /
    • 2023
  • This article investigates the statically analysis regarding the thermal buckling behavior of a nonuniform small-scale nanobeam made of functionally graded material based on classic beam theories along with the nonlocal Eringen elasticity. The material distribution of functionally graded structures is composed of temperature-dependent ceramic and metal phases in axial and thickness directions, called two-dimensional functionally graded (2D-FG). The partial differential (PD) formulations and end conditions are extracted by using to the conservation energy method. The porosity voids are assumed in the nonuniform functionally graded (FG) structure. The thermal loads are in the axial direction of the beam. The extracted nonlocal PD equations are also solved by employing generalized differential quadrature method (GDQM). Last but not least, the information acquired is used to produce miniature sensors, providing a unique perspective on the growth of nanoelectromechanical systems (NEMS).