• Title/Summary/Keyword: Porous Layer

Search Result 761, Processing Time 0.026 seconds

Studies on the Coating Structure and Printability of Coated Paper(II) - Effect of Ionic Groups of Latices on Coating Structure - (도공층 구조 및 도공지의 인쇄적성에 관한 연구(II) - 라텍스 이온기가 도공층 구조에 미치는 영향 -)

  • Lee, Yong-Kyu;Park, Kyu-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.10-16
    • /
    • 1997
  • This study was carried out to improve coating structure by controlling the electrostatic interaction of coating components and by changing the coating structure of coated paper prepared with amphoteric and anionic latices. The results indicated that amphoteric latex copolymerized with carboxylic and amine groups had stronger interaction with other coating components than anionic latex with branched carboxylic group by controlling pH. These properties of amphoteric latex showed positive effects on viscosity rheology, and supernatant sediment of coating color. The coated paper using amphoteric latex had also produced more porous and smoother coverage of the coating layer than that using anionic latex. This porous and smooth coating layer showed better optical properties and printability than those of anionic latex such as opacity, porosity, ink set-off, and wet ink receptivity.

  • PDF

Behavior of Initial Formation of Iron Nitride on Carbon Steel at Low Pressure Gas Nitriding (저압가스질화에서 탄소강의 초기 화합물층 형성 거동)

  • Kim, Yoon-Kee;Kim, Sang-Gweon
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.75-81
    • /
    • 2011
  • Growth behaviors of iron-nitride on S45C steels at low pressure gas nitriding were examined. Surfaces of the steels covered with fine and porous oxide during the pre-oxidation using $N_2O$ gas. Well faceted particles connected with them were observed after 1 min nitriding. They grew steadily and filled inter-pores during additional nitriding process. From the X-ray diffraction analysis, ${\gamma}'$-iron nitride was dominantly formed at the initial stage but the amount of ${\varepsilon}$-iron nitride was rapidly increased as nitriding treatment time. The porous layer was formed on the particles and thickened up to half of nitride layer after 60 min nitriding. The observed growth behaviors were discussed in internal stress related with volume expansion involved in transforming from iron to iron-nitrides.

Insights into the significance of membrane structure and concentration polarization on the performance of gas separation membrane permeators: Mathematical modeling approach

  • Dehkordi, Javad Aminian;Hosseini, Seyed Saeid;Kundu, Prodip K.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.333-346
    • /
    • 2018
  • This study presents a mathematical modeling approach for developing models based on non-ideal conditions related to the membrane structure including porous supporting layer and deformation under pressure. Comparison of the findings with experimental data reveal the importance of considering the resistance in porous supporting layer though the effect of concentration polarization in the permeate stream could be neglected. Investigations on deformation of fibers under pressure ascertain that at larger fiber inner radius to outer radius ratios, increasing driving force may lead to an initial increase in permeability. After that, the effects of deformation dominates and thus permeability may be decreased.

The Sulfidation and Oxidation Behavior of Sputter-Deposited Nb-Al-Cr Alloys at High Temperatures

  • Habazaki, Hiroki;Yokoyama, Kazuki;Konno, Hidetaka
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.141-147
    • /
    • 2003
  • Sputter-deposited Nb-Al-Cr alloys. $3-5{\mu}m$ thick, have been prepared on quartz substrates as oxidation-and sulfidation-resistant materials at high temperatures. The oxidation or the alloys in the $Ar-O_2$ atmosphere of an oxygen partial pressure of 20 kPa follows approximately the parabolic rate law, thus being diffusion controlled. Their oxidation rates are almost the same as or even lower than those ofthc typical chromia-forming alloys. The multi-lavered oxide scales are formed on the ternary alloys. The outermost layer is composed of $Cr_2O_3$, which is"mainly responsible for the high oxidation'resistance of these alloys. In contrast to sputter-deposited Cr-Nb binary alloys reported previously, the inner layer is not porous. TEM observation as well as EDX analysis indicates that the innermost layer is a mixture of $Al_2O_3$ and niobium oxide. The dispersion of $Al_2O_3$ in niobium oxide may be attributable to the prevention of the formation of the porous oxide layer. The sulfidation rates of the present ternary alloys arc higher than those of the sputter-deposited Nb-AI binary alloys, but still several orders of magnitude lower than those of conventional high temperature alloys. Two-layered sulfide scales are formed, consisting of an outer $Al_2S_3$ layer containing chromium and an inner layer composed of $NbS_2$ and a small amount of $Cr_2S_3$. The presence of $Cr_2S_3$ in the inner protective $NbS_2$ layer may be attributed to the increase in the sulfidation rates.

Development of Environmentally Favorable Porous Concrete and Water Purification Characteristics by the Pavement System (친환경 도로포장용 투수콘크리트의 제조와 이를 이용한 도로포장시스템의 수질정화특성)

  • Hong, Chong-Hyun;Kim, Moon-Hoon;Yang, Churl-Shin
    • Journal of Environmental Science International
    • /
    • v.15 no.11
    • /
    • pp.1045-1052
    • /
    • 2006
  • Stormwater pollution is a major problem in urban areas. Pollutants like heavy metals and harmful chemicals in the runoff can endanger soil and ground water, when they are not sufficiently removed doting infiltration. Strength and infiltration capacity of porous concrete are the major problems that must be considered if permeable pavement system are demanded to be used in a drive way application. In this study, a series of compacted porous concrete mixtures and the system of pavement ate tested for the physical characteristics like compressive strength, flexural strength, unit weight, porosity, water permeability, and the purification capacity of contaminated water. The test results obtained indicate that the strength and infiltration capacity of porous concrete are strongly related to its matrix proportion and compaction energy and providing adequate filter layers underneath pavement surface course is one of the most important design considerations of permeable pavement system for pollution retention purpose.

Porous Alumina/Mullite Layered Composites with Unidirectional Pore Channels and Improved Compressive Strength (일축배향 기공채널과 향상된 압축강도를 갖는 다공질 알루미나/뮬라이트 층상 복합체)

  • Kim, Kyu Heon;Kim, Tae Rim;Kim, Dong Hyun;Yoon, Seog Young;Park, Hong Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • Three-layer porous alumina-mullite composites with a symmetric gradient porosity are prepared using a controlled freeze/gel-casting method. In this work, tertiary-butyl alcohol (TBA) and coal fly ash with an appropriate addition of $Al_2O_3$ were used as the freezing vehicle and the starting material, respectively. When sintered at $1300-1500^{\circ}C$, unidirectional macro-pore channels aligned regularly along the growth direction of solid TBA were developed. Simultaneously, the pore channels were surrounded by less porous structured walls. A high degree of solid loading resulted in low porosity and a small pore size, leading to higher compressive strength. The sintered porous layered composite exhibited improved compressive strength with a slight decrease in its porosity. After sintering at $1500^{\circ}C$, the layered composite consisting of outer layers with a 50 wt% solid loading showed the highest compressive strength ($90.8{\pm}3.7MPa$) with porosity of approximately 26.4%.

A Study of Multi-Surface Treatments on the Porous Ti Implant for the Enhancement of Bioactivity (다공성 티타늄 임플란트의 생체적합성 증진을 위한 복합 표면처리에 관한 연구)

  • Cho, Yu-Jeong;Kim, Yung-Hoon;Jang, Hyoung-Soon;Kang, Tae-Ju;Lee, Won-Hee
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.229-234
    • /
    • 2008
  • Porous Ti implant samples were fabricated by the sintering of spherical Ti powders in a high vacuum furnace. To increase their surface area and biocompatibility, anodic oxidation and a hydrothermal treatment were then applied. Electrolytes in a mixture of glycerophosphate and calcium acetate were used for the anodizing treatment. The resulting oxide layer was found to have precipitated in the phase form of anatase $TiO_2$ and nano-scaled hydroxyapatite on the porous Ti implant surface. The porous Ti implant can be modified via an anodic oxidation method and a hydrothermal treatment for the enhancement of the bioactivity, and current multi-surface treatments can be applied for use in a dental implant system.

Fabrication of porous clay ceramics using sufactant (계면활성제를 이용한 점토질 다공체 세라믹스 제조에 관한 연구)

  • 김윤주;배옥진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.56-61
    • /
    • 2002
  • Porous clay ceramics was fabricated using the surfactant as a foaming agent in the secondary-clay produced at Young-Am area in Chun-Nam province. The concentration of surfactant in ceramic slurry was the key factor controlling the pore characteristics and physical properties of the porous ceramics. The more increase of the surfactant concentration increase the more foaming ability and the stability of foamed layer were improved, but the foaming ability was limited within 6.0 wt% of surfactant because the initial viscosity of the slurry increased with increasing the amounts of surfactant. The formed specimen were sintered at both $1150^{\circ}C$ and $1200^{\circ}C$, the porous ceramics showed 0.9 of specific gravity, 50% of water absorption, 45% of apparent porosity, 14% of shrinkage and 70 kg/$\textrm{cm}^2$ of compressive strength.

Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method

  • Emdadi, Mohsen;Mohammadimehr, Mehdi;Navi, Borhan Rousta
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.109-123
    • /
    • 2019
  • In this article, the free vibration analysis of annular sandwich plates with various functionally graded (FG) porous cores and carbon nanotubes reinforced composite (CNTRC) facesheets is investigated based on modified couple stress theory (MCST) and first order shear deformation theories (FSDT). The annular sandwich plate is composed of two face layers and a functionally graded porous core layer which contains different porosity distributions. Various approaches such as extended mixture rule (EMR), Eshelby-Mori-Tanaka (E-M-T), and Halpin-Tsai (H-T) are used to determine the effective material properties of microcomposite circular sandwich plate. The governing equations of motion are extracted by using Hamilton's principle and FSDT. A Ritz method has been utilized to calculate the natural frequency of an annular sandwich plate. The effects of material length scale parameters, boundary conditions, aspect and inner-outer radius ratios, FG porous distributions, pore compressibility and volume fractions of CNTs are considered. The results are obtained by Ritz solutions that can be served as benchmark data to validate their numerical and analytical methods in the future work and also in solid-state physics, materials science, and micro-electro-mechanical devices.

Recent applications of lubricant-impregnated nanoporous surface : A Review (윤활액이 담지된 나노다공성 표면의 최신 응용분야)

  • Kyeongwan Han;Kichang Bae;Junghoon Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Lubricant-impregnated nanoporous surfaces (LIS), which is created by impregnating water-immiscible oil into nanoporous surface structure, have been explored considering wide range of application fields. Due to the lubricant impregnated in nanoporous structure, the surface shows extreme de-wetting with a high mobility of water droplets, so that various functionalities can be realized. The lubricant layer inhibits the contact of corrosive media to porous structure as well as metal substrate, thus the surface improves the corrosion resistance. The water on the surface freeze without any contact to solid porous structure, showing a low ice adhesion for de-icing an anti-icing. The extremely high mobility of water droplets on lubricant-impregnated porous surfaces also contributes the enhancement of condensation heat transfer as well as water harvesting from fog and moisture. Moreover, the bacteria adhesion on metal surface forming biofilms causing serious hygiene issues can be inhibited on the lubricantimpregnated surfaces. Despite of such superior functionalities, the lubricant-impregnated porous surface has a limitation of lubricant depletion by external flow of fluids. Therefore, extensive efforts to improve the durability of lubricant-impregnated surface are required for practical applications.