The Sulfidation and Oxidation Behavior of Sputter-Deposited Nb-Al-Cr Alloys at High Temperatures

  • Published : 2003.06.01

Abstract

Sputter-deposited Nb-Al-Cr alloys. $3-5{\mu}m$ thick, have been prepared on quartz substrates as oxidation-and sulfidation-resistant materials at high temperatures. The oxidation or the alloys in the $Ar-O_2$ atmosphere of an oxygen partial pressure of 20 kPa follows approximately the parabolic rate law, thus being diffusion controlled. Their oxidation rates are almost the same as or even lower than those ofthc typical chromia-forming alloys. The multi-lavered oxide scales are formed on the ternary alloys. The outermost layer is composed of $Cr_2O_3$, which is"mainly responsible for the high oxidation'resistance of these alloys. In contrast to sputter-deposited Cr-Nb binary alloys reported previously, the inner layer is not porous. TEM observation as well as EDX analysis indicates that the innermost layer is a mixture of $Al_2O_3$ and niobium oxide. The dispersion of $Al_2O_3$ in niobium oxide may be attributable to the prevention of the formation of the porous oxide layer. The sulfidation rates of the present ternary alloys arc higher than those of the sputter-deposited Nb-AI binary alloys, but still several orders of magnitude lower than those of conventional high temperature alloys. Two-layered sulfide scales are formed, consisting of an outer $Al_2S_3$ layer containing chromium and an inner layer composed of $NbS_2$ and a small amount of $Cr_2S_3$. The presence of $Cr_2S_3$ in the inner protective $NbS_2$ layer may be attributed to the increase in the sulfidation rates.

Keywords

References

  1. P. Kofstad, High Temperature Corrosion, Elsevier, London and New York, 1988, p.425
  2. S. Mrowec and K. Przybylski, High Temp. Mater. Processes, 6, 1 (1984)
  3. S. Mrowec, Oxid. Met., 44, 177 (1995)
  4. F. Gesmundo, F. Viani, and Y. Niu, Oxid. Met., 38, 465 (1992)
  5. R.V. Carter, D.L. Douglass, and F. Gesmundo, Oxid. Met., 31, 341 (1989)
  6. G. Wang, R. Carter, and D.L. Douglass, Oxid. Met . 32, 273 (1989)
  7. C.C. Shing, D.L. Douglass, and F. Gesmundo, Oxid. Met., 37, 167 (1992)
  8. Y. Niu, F. Gesmundo, and F. Viani, Corms. Sci. 36, 423 (1994)
  9. Y. Niu, F. Gesmundo, and F. Viani, Corros. Sci. 36, 1885 (1994)
  10. Y. Niu, F. Viani, and F. Gesmundo. Corros. Sci. 36, 883 (1994)
  11. Y. Niu, F. Gesmundo, and F. Viani, Corross. Sci. 36, 853
  12. G. Wang, D.L. Douglass, and F. Gesmundo, Oxid. Met. 35, 279 (1991)
  13. G. Wang, D.L. Douglass. and F. Gesmundo, Oxid. Met. 36, 349 (1991)
  14. H. Habazaki. J. Dabek, K. Hashimoto, S. Mrowe, and M. Danielewski, Corros. Sci., 34, 183 (1993)
  15. H. Mitsui, H. Habazaki. K. Asami, K. Hashimoto, and S. Mrowec, Corros. Sci., 38, 1431 (1996)
  16. H. Mitsui, H. Habazaki, K. Hashimoto, and S. Mrowec, Corros. Sci., 39, 59 (1997)
  17. K. Ito, H. Habazaki, H. Mitsui, E. Akiyama, K. Asami, K. Hashimoto, and S. Mrowec, Mater. Sci. Eng. A226-228, 910 (1997)
  18. H. Hahazaki, H. Mitsui, K. Asami, S. Mrowec, and K. Hashimoto, Trans. Mater. Res. Soc. Jpn., 14A, 309 (1994)
  19. H. Mitsui, H. Habazaki, K. Hashimoto, and S. Mrowec, Corros. Sci., 39, 9 (1997)
  20. H. Mitsui, H. Habazaki, K. Hashimocto, and S. Mrowec, Corros. Sci., 39, 1571 (1997)
  21. G.C. Wood, Oxid. Met., 2, 11 (1970)