• 제목/요약/키워드: Porous Layer

검색결과 754건 처리시간 0.026초

전기화학적 처리에 의한 다공질 실리콘 산화막의 형성과 감습 특성 (Formation and humidity-sensing properties of porous silicon oxide films by the electrochemical treatment)

  • 최복길;민남기;류지호;성영권
    • 대한전기학회논문지
    • /
    • 제45권1호
    • /
    • pp.93-99
    • /
    • 1996
  • The formation properties and oxidation mechanism of electrochemically oxidized porous silicon(OPS) films have been studied. To examine the humidity-sensitive properties of OPS films, surface-type and bulk-type humidity sensors were fabricated. The oxidized thickness of porous silicon layer(PSL) increases with the charge supplied during electrochemical humidity sensor shows high sensitivity at high relative humidity in low temperature. The sensitivity and linearity can be improved by optimizing a porosity of PSL. (author). refs., figs.

  • PDF

광 루미네슨스 다공질 실리콘을 이용한 새로운 자외선 센서 (A Novel Ultraviolet Sensor using Photoluminescent Porous Silicon)

  • 민남기;고주열;강철구
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권9호
    • /
    • pp.444-449
    • /
    • 2001
  • In this paper, a novel ultraviolet sensor is presented based on a photoluminescent porous silicon. Porous silicon layer was formed by chemical etching of surface of pn junction in a $HF(48%)-HNO_3(60%)-H_20$ solution. Incident ultraviolet(UV) light is converted to visible light by photoluminescent porous silicon layer, and then this visible light generates electron-hole pairs in the pn junction, which produces a photocurrent flow through the device. In order to maximize detection efficiency, the peak sensitivity wavelength of the pn junction diode was matched with the peak wavelength of Photoluminescence from porous silicon layer. The porous silicon ultraviolet sensor showed a large output current as UV intensity increases and but very low sensitivity to visible light. The detection sensitivity of porous silicon sensor was calculated as 2.91mA/mW. These results are expected to open up a possibility that the present porous silicon sensor can be used for detecting UV light in a visible background, compared to silicon UV detectors which have an undesirable response to visible light.

  • PDF

다공물질 표면처리가 경사판의 증발냉각에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effects of Porous Layer Treatment on Evaporative Cooling of an Inclined Surface)

  • 이대영;이재완;강병하
    • 설비공학논문집
    • /
    • 제17권1호
    • /
    • pp.25-32
    • /
    • 2005
  • Falling film heat transfer has been widely used in many applications in which heat and mass transfer occur simultaneously, such as evaporative coolers, cooling towers, absorption chillers, etc. In such cases, it is desirable that the falling film spreads widely on the surface forming thin liquid film to enlarge contact surface and to reduce the thermal resistance across the film and/or the flow resistance to the vapor stream over the film. In this work, the surface is treated to have thin porous layer on the surface. With this treatment, the liquid can be spread widely on the surface by the capillary force resulting from the porous structure. In addition to this, the liquid can be held within the porous structure to improve surface wettedness regardless of the surface inclination. The experiment on the evaporative cooling of an inclined surface has been conducted to verify the effectiveness of the surface treatment. It is measured that the evaporative heat transfer increases about $50\%$ by the porous layer treatment as compared with that from orignal bare surfaces.

이오나이저 및 유전체 방식을 도입한 다층 다단 다공성 플레이트 시스템의 집진특성 (Dust Collection Characteristics of Multi-layer Multi-stage Porous Plate System with Ionizer and Dielectric-substance)

  • 여석준
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.63-72
    • /
    • 2013
  • The main purpose of this study is to analyze the collection characteristics of multi-layer multi-stage porous plate system with ionizer and dielectric-substance experimentally. The experiment is carried out to analyze the characteristics of pressure drop and collection efficiency for the present system with experimental parameters such as applied voltage, inlet velocity, stage number and inlet particle concentration, etc. In results, for multi-layer multi-stage porous plate system of inflow type, at 5 stage and $v_{in}$=2.58 m/s, the pressure drop becomes lower 15 $mmH_2O$ as 95 $mmH_2O$ than that of non-inflow type system. It is estimated that for the present system with ionizer and dielectric-substance, the collection efficiency represents 98.5% showing higher 5.2% comparing to that of multi-layer multi-stage porous plate system without ionizer and dielectric-substance at 5 stage, $v_{in}$=2.58 m/s and inlet concentration $3g/m^3$(fly ash).

다공질 실리콘 산화법을 이용한 MMIC 기판의 제조 및 그 특성 (Fabrication and Characteristics of MMIC Substrate using Oxidation of Porous Silicon)

  • 권오준;김경재;이재승;이종현;최현철;이정희;김기완
    • 센서학회지
    • /
    • 제8권2호
    • /
    • pp.202-209
    • /
    • 1999
  • 본 연구에서는 기존의 열산화막과 거의 버금가는 전기적 및 화학적인 성질을 가진다고 알려져 있는 다공질 실리콘 산화막을 이용하여 마이크로스트립 전송선을 제작하였다. 실리콘 기판의 결정상태를 유지하면서 표면적과 화학적 활성이 큰 다공질 실리콘층(porous silicon layer)을 형성한 다음, 이를 열산화 하여 수 십 ${\mu}m$ 두께의 산화막을 실리콘 기판 상에 제조하였다. 수십 ${\mu}m$ 이상의 양질의 산화막을 얻기 위한 다공질 실리콘의 산화시에 스트레스에 의한 웨이퍼의 휘어짐을 방지하기 위하여 다단계의 열산화 공정을 수행하였다. 제조된 실리콘 산화막 상에 마이크로스트립 전송선을 제작하고 그 마이크로웨이브 특성을 측정하여 MMIC 기판으로서의 응용 가능성을 조사하였다.

  • PDF

Study on Thickness of Porous Silicon Layer According to the Various Anodization Times

  • 장승현
    • 통합자연과학논문집
    • /
    • 제3권4호
    • /
    • pp.206-209
    • /
    • 2010
  • As the etching time is varied, the change of thickness of the porous silicon layers was successfully investigated. The thickness of the PSi layer as a function of anodization time for a p-type substrate that is etched at a constant current density of 50 $mA/cm^2$ in a 35% hydrofluoric acid solution shows a linear relationship between the etching time and the thickness of the PSi layer.

Simply Modified Biosensor for the Detection of Human IgG Based on Protein AModified Porous Silicon Interferometer

  • Park, Jae-Hyun;Koh, Young-Dae;Ko, Young-Chun;Sohn, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권7호
    • /
    • pp.1593-1597
    • /
    • 2009
  • A biosensor has been developed based on induced wavelength shifts in the Fabry-Perot fringes in the visible reflection spectrum of appropriately derivatized thin films of porous silicon semiconductors. Porous silicon (PSi) was generated by an electrochemical etching of silicon wafer using two electrode configurations in aqueous ethanolic HF solution. Porous silicon displayed Fabry-Perot fringe patterns whose reflection maxima varied spatially across the porous silicon. The sensor system studied consisted of a mono layer of porous silicon modified with Protein A. The system was probed with various fragments of an aqueous Human Immunoglobin G (Ig G) analyte. The sensor operated by measurement of the Fabry-Perot fringes in the white light reflection spectrum from the porous silicon layer. Molecular binding was detected as a shift in wavelength of these fringes.

Preparation and Gas Permeability of ZIF-7 Membranes Prepared via Two-step Crystallization Technique

  • Li, Fang;Li, Qiming;Bao, Xinxia;Gui, Jianzhou;Yu, Xiaofei
    • Korean Chemical Engineering Research
    • /
    • 제52권3호
    • /
    • pp.340-346
    • /
    • 2014
  • Continuous and dense ZIF-7 membranes were successfully synthesized on ${\alpha}-Al_2O_3$ porous substrate via two-step crystallization technique. ZIF-7 seeding layer was first deposited on porous ${\alpha}-Al_2O_3$ substrate by in-situ low temperature crystallization, and then ZIF-7 membrane layer can be grown through the secondary high-temperature crystallization. Two synthesis solutions with different concentration were used to prepare ZIF-7 seeding layer and membrane layer on porous ${\alpha}-Al_2O_3$ substrate, respectively. As a result, a continuous and defect-free ZIF-7 membrane layer can be prepared on porous ${\alpha}-Al_2O_3$ substrate, as confirmed by scanning electron microscope. XRD characterization shows that the resulting membrane layer is composed of pure ZIF-7 phase without any impurity. A single gas permeation test of $H_2$, $O_2$, $CH_4$ or $CO_2$ was conducted based on our prepared ZIF-7 membrane. The ZIF-7 membrane exhibited excellent H2 molecular sieving properties due to its suitable pore aperture and defect-free membrane layer.

Forced Convection in a Circular Pipe with a Partially Filled Porous Medium

  • Kim, Woo-Tae;Hong, Ki-Hyuek;Myung S. Jhon;John G. VanOsdo;Duane H. Smith
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1583-1596
    • /
    • 2003
  • A study of forced convection in a circular pipe with a partially filled porous medium was numerically investigated. The Brinkman-Forchheimer extension of the Darcy model was used to analyze the and temperature distribution in the porous medium. Our study includes two types of porous layer configurations: (1) a layer attached at the tube wall extending inward towards the centerline and (2) a layer at the centerline extending outward. The effect of several parameters, such as Darcy number, effective viscosity, effective thermal conductivity, and inertia parameter, as well as the effect of geometric parameters, were investigated.

다공성 흡음재가 조합된 다중 다공판 시스템의 흡음성능에 관한 연구 (A Study on the Sound Absorption of Multiple Layer Perforated Plate Systems Combined with Porous Absorbing Materials)

  • 허성욱;김욱;이동훈;권영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.896-901
    • /
    • 2002
  • The sound absorption coefficients for multiple layer perforated plate systems containing several compartments with airspaces and porous absorbing materials are estimated using the transfer matrix method developed in the previous paper. The absorption coefficients from transfer matrix method agree well with the values measured by the two-microphone impedance tube method for various combinations of perforated plates, airspaces or porous materials. Based on these results, a guidance for the design of multiple layer perforated plate systems combined with airspaces and porous absorbing materials is discussed in detail.

  • PDF