• Title/Summary/Keyword: Porous Layer

Search Result 754, Processing Time 0.027 seconds

Mechanical Behavior of Glass/Porous Alumina by Contact Loading (유리/다공성 알루미나의 접촉하중에 의한 기계적 거동)

  • Kim, Chul;Kim, Sang Kyum;Kim, Tae Woo;Lee, Kee Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.399-405
    • /
    • 2014
  • Porous alumina with different porosities, 5.2 - 47.5%, were coated with cover-glass having a thickness of $160{\mu}m$, using epoxy adhesive. We investigated the effect of the porosity of the substrate layer on the crack initiation load, and the size of cracks propagated in the coating layer. Hertzian indentations were used to evaluate the damage behavior under a constrained loading condition. Typically, two types of cracks, ring cracks and radial cracks, were observed on the surface of the glass/porous alumina structure. Indentation stress-strain curves, crack initiation loads, crack propagation sizes, and flexural strengths were investigated as a function of porosities. The results indicated that a porosity of less than 30% and a higher substrate elastic modulus were beneficial at suppressing cracks occurrence and propagation. We expect lightweight mechanical components with high strength can be successfully fabricated by coating and controlling porosities in the substrate layer.

Porous Fence Effects on Surface-Pressure of a Triangular Prism in Atmospheric Boundary Layer (다공성 방풍펜스가 대기경계층내에 놓인 삼각프리즘 표면압력에 미치는 영향에 관한 연구)

  • Park, Cheol-U;Seong, Seung-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2670-2680
    • /
    • 1996
  • Effeccs of porous wind fence on surface-pressure around 2-dimensional prism model of triangular cross-section were investigated experimentally. The pressure data were obtained at a Reynolds number based on the model height of Re=2.1*10$^{5}$ . Flow visualization also carried out to investigate the flow structure qualitatively. The mean velocity and turbulent intensity profiles measured at fence location were well fitted to the neutral atmospheric surface boundary layer over the open terrain. Various fences with different porosity and height were tested to investigate their effects on the surface pressure acting on a prism model at different locations. As the results, porous fence with porosity 40 ~ 50% is most effective for abating wind erosion. With decreasing porosity of the fence, pressure fluctuations on the model surface are increased. The mean pressure coefficients are decreased only when the fence height is greater than the model height. The effect of distance between wind fence and triangular prism was not significant, compared to that of the fence porosity and height.

A Study on Measuring Electrical Capacitance to Access the Volumetric Water Content of Simulated Soil

  • Rial, W.S.;Han, Y.J.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.30-37
    • /
    • 2000
  • Wet porous media representing agronomic soil that contains variable water content with variable electrolyte concentration was measured to study the shape of the curves of the electric double layer capacitance versus frequency (from 10 KHz to 10 MHz. This was done in an attempt to find the lowest practical operating frequency for developing low cost dielectric constant soil moisture probes. Cellulose sponge was used as the porous media. A high frequency electronic bridge circuit was developed for measuring the equivalent network parallel resistance and capacitance of porous media. It appears that the effects of the electric double layer component of the total parallel network capacitance essentially disappear at operating frequencies greater than approximately 25 MHz at low electrolyte concentrations but are still important at 50 MHz at higher concentrations. At these frequencies, the double layer capacitance masks the diffusion region capacitance where true water content capacitance values reside. The general shape of the curve of volumetric water content versus porous media dielectric constant is presented, with an empirical equation representing data for this type of curve. It was concluded that the lowest frequency where dielectric constant values which represent true water content information will most likely be found is between 30 and 50 MHz at low electrolyte concentrations but may be above 50 MHz when the total electrolyte concentration is near the upper level required for most mesophyte plant nutrition.

  • PDF

Removal of Methylene Blue from Water Using Porous $TiO_2$/Silica Gel Prepared by Atomic Layer Deposition

  • Sim, Chae-Won;Seo, Hyun-Ook;Kim, Kwang-Dae;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.160-160
    • /
    • 2011
  • In the present work, $TiO_2$ fiilms supported by porous silica gel with high surface area synthesized by atomic layer deposition(ALD). Porous structure of silica substrate could be maintained even after deposit large amount of $TiO_2$ (500 cycles of ALD process), suggesting the differential growth mode of $TiO_2$ on top surface and inside the pore. All the $TiO_2$-covered silica samples showed improved MB adsorption abilities, comparing to bare one. In addition, when silica surface was covered with $TiO_2$ films, MB adsorption capacity was almost fully recovered by re-annealing process (500$^{\circ}C$, for 1 hr, in ambient pressure), whereas MB adsorption capacity of bare silica was decreased after re-heaing process. FT-IR study demonstrated that $TiO_2$ film could prevent deposition of surface-bound intermediate species during thermal decomposition of adsorbed MB molecules. Photocatalytic activity of $TiO_2$/silica sample was also investigated.

  • PDF

Collection Characteristics of Multi-layer Multi-stage Porous Plate System (다층 다단 다공성 플레이트 시스템의 집진 특성)

  • Kim, I.K.;Yoa, S.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.10-16
    • /
    • 2010
  • The main object of this study is to investigate the collection characteristics of multi-layer multi-stage porous plate system experimentally. The experiment is carried out to analyze the characteristics of pressure drop and collection efficiency for the present system with the experimental parameters such as inlet velocity, tube diameter, inlet concentration, and stage number, etc. In results, the pressure drop becomes 22 to $115mmH_2O$ with increment of stage number (1 to 5) of porous plate system at tube velocity 15 m/s and tube diameter ${\Phi}8$. In case of fly ash and 5 stage, the collection efficiency becomes 90.5 to 95.7% increasing the tube velocity 12 to 15 m/s at inlet concentration $3g/m^3$ and tube diameter ${\Phi}8$. Additionally, it is estimated that the collection efficiencies of 5 stage are 94.3, 95.6 and 99.1% for fly ash, steel dust and based power, respectively (${\Phi}8$ tube, $V_t$ = 12m/s, inlet concentration $3g/m^3$).

Rate Capability of Electric Double-Layer Capacitor (EDLC) Electrodes According to Pore Length in Spherical Porous Carbons

  • Ka, Bok-H.;Yoon, Song-Hun;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.252-256
    • /
    • 2007
  • A series of spherical porous carbons were prepared via resorcinol-formaldehyde (RF) sol-gel polymerization in the presence of cationic surfactant (CTAB, cetyltrimethylammonium bromide), wherein the carbon sphere size was controlled by varying the CTAB introduction time after a pre-determined period of addition reaction (termed as "pre-curing"). The sphere size gradually decreases with an increase in the pre-curing time within the range of 30-150 nm. The carbons possess two types of pores; one inside carbon spheres (intra-particle pores) and the other at the interstitial sites made by carbon spheres (inter-particle pores). Of the two, the surface exposed on the former was dominant to determine the electric double-layer capacitor (EDLC) performance of porous carbons. As the intra-particle pores were generated inside RF gel spheres by gasification, the pore diameter was similar for all these carbons, thereby the pore length turned out to be a decisive factor controlling the EDLC performance. The charge-discharge voltage profiles and complex capacitance analysis consistently illustrate that the smaller-sized RF carbons deliver a better rate capability, which must be the direct result of facilitated ion penetration into shorter pores.

Effect of Air Additions on the Growth Characteristics of the Compound Layer during Oxynitriding in50%NH3+Air+N2 Atmosphere (50% NH3-Air-N2가스분위기에서 Oxynitriding시 Compound Layer의 성장 특성에 미치는 공기첨가효과)

  • Kim, Y.H.;Lee, Y.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.3
    • /
    • pp.206-218
    • /
    • 1994
  • In 50%$NH_3+Air+N_2$ atmospheres, the effect of air additions on the growth characteristics of the compound layer during oxynitriding at $570^{\circ}C$ for 2hr in carbon and alloy steels has been investigated. The ammount of apparent residual ammonia during oxynitriding has shown to be increased with air additions(9~36 Vol. %) and X-ray diffraction analysis of case oxynitreded has shown that the compound layer consist of ${\varepsilon}-Fe_{2-3}$(N, C) phase and ${\gamma}^{\prime}-Fe_4$(N,C) phase. In the case of carbon steels, the thickness of oxide layer, compound layer and porous layer and the amount of ${\varepsilon}-Fe_{2-3}$(N,C) phase in the compound layer were increased with additions of air in 50%$NH_3+N_2$ atmospheres. At the same gas composition, the thickenss of oxide layer, compound layer and porous layer in alloy steels showed slightly thin layer thickness compared to those of carbon steels and the ${\gamma}^{\prime}-Fe_4$(N,C) phase in the compound layer of alloy steels was found barely. Therefore, the most obvious effect of air addition in the gas nitriding atmosphere has been found to in crease further kinetics of nitriding reaction.

  • PDF

Fabrication of Porous Cu Layers on Cu Pillars through Formation of Brass Layers and Selective Zn Etching, and Cu-to-Cu Flip-chip Bonding (황동층의 형성과 선택적 아연 에칭을 통한 구리 필라 상 다공성 구리층의 제조와 구리-구리 플립칩 접합)

  • Wan-Geun Lee;Kwang-Seong Choi;Yong-Sung Eom;Jong-Hyun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.98-104
    • /
    • 2023
  • The feasibility of an efficient process proposed for Cu-Cu flip-chip bonding was evaluated by forming a porous Cu layer on Cu pillar and conducting thermo-compression sinter-bonding after the infiltration of a reducing agent. The porous Cu layers on Cu pillars were manufactured through a three-step process of Zn plating-heat treatment-Zn selective etching. The average thickness of the formed porous Cu layer was approximately 2.3 ㎛. The flip-chip bonding was accomplished after infiltrating reducing solvent into porous Cu layer and pre-heating, and the layers were finally conducted into sintered joints through thermo-compression. With reduction behavior of Cu oxides and suppression of additional oxidation by the solvent, the porous Cu layer densified to thickness of approximately 1.1 ㎛ during the thermo-compression, and the Cu-Cu flip-chip bonding was eventually completed. As a result, a shear strength of approximately 11.2 MPa could be achieved after the bonding for 5 min under a pressure of 10 MPa at 300 ℃ in air. Because that was a result of partial bonding by only about 50% of the pillars, it was anticipated that a shear strength of 20 MPa or more could easily be obtained if all the pillars were induced to bond through process optimization.

Modified Shrinking Core Model for Atomic Layer Deposition of TiO2 on Porous Alumina with Ultrahigh Aspect Ratio

  • Park, Inhye;Leem, Jina;Lee, Hoo-Yong;Min, Yo-Sep
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.519-523
    • /
    • 2013
  • When atomic layer deposition (ALD) is performed on a porous material by using an organometallic precursor, minimum exposure time of the precursor for complete coverage becomes much longer since the ALD is limited by Knudsen diffusion in the pores. In the previous report by Min et al. (Ref. 23), shrinking core model (SCM) was proposed to predict the minimum exposure time of diethylzinc for ZnO ALD on a porous cylindrical alumina monolith. According to the SCM, the minimum exposure time of the precursor is influenced by volumetric density of adsorption sites, effective diffusion coefficient, precursor concentration in gas phase and size of the porous monolith. Here we modify the SCM in order to consider undesirable adsorption of byproduct molecules. $TiO_2$ ALD was performed on the cylindrical alumina monolith by using titanium tetrachloride ($TiCl_4$) and water. We observed that the byproduct (i.e., HCl) of $TiO_2$ ALD can chemically adsorb on adsorption sites, unlike the behavior of the byproduct (i.e., ethane) of ZnO ALD. Consequently, the minimum exposure time of $TiCl_4$ (~16 min) was significantly much shorter than that (~71 min) of DEZ. The predicted minimum exposure time by the modified SCM well agrees with the observed time. In addition, the modified SCM gives an effective diffusion coefficient of $TiCl_4$ of ${\sim}1.78{\times}10^{-2}\;cm^2/s$ in the porous alumina monolith.