• 제목/요약/키워드: Porous 3C-SiC

검색결과 151건 처리시간 0.026초

상압소결에 의하여 제조된 SiC-AlN 세라믹스의 상 및 미세구조 (Phase and Microstructure of SiC-AlN Ceramics Prepared by Pressureless Sintering)

  • 최웅;이종국;조덕호;김환
    • 한국세라믹학회지
    • /
    • 제32권11호
    • /
    • pp.1308-1314
    • /
    • 1995
  • Changes in phase and microstructure were investigated in the SiC-AlN ceramics prepared by pressureless sintering using yttrium aluminum garnet (YAG) as a sintering aid at 200$0^{\circ}C$ and 210$0^{\circ}C$. The SiC/AlN ratio made a remarkable difference in densification, phase relations and the morphology of grains. In the AlN-rich composition, major phase was 2H and microstructure was composed of the densified equiaxed grains irrespective of the sintering temperatures. While those sintered at 200$0^{\circ}C$ were porous with major phase being 3C, the rod-like and the equiaxed grains were coexisted when sintered at 210$0^{\circ}C$ in the SiC-rich composition.

  • PDF

$Si_3N_4$의 산화반응 기구 (Oxidation Mechanism of $Si_3N_4$)

  • 이홍림;최태운;김종우
    • 한국세라믹학회지
    • /
    • 제17권4호
    • /
    • pp.197-202
    • /
    • 1980
  • The oxidation mechanism of the not sintered pellets and sintered bodies of $Si_3N_4$ was investigated. in air over the temperature range of 800~130$0^{\circ}C$. The $\beta$-cristobalite was instantaneously formed and covered the particles of powder packed in the not sintered and weakly sintered porous $Si_3N_4$ bodies by molecular diffusion of oxygen through the porous Si3N4 bodies and an immediate oxidation. The diffusion of oxygen ion through the formed $\beta$-cristobalite surface layer is assumed to control the further oxidation of the $Si_3N_4$ particles of the porous $Si_3N_4$ bodies. The diffusion coefficients and activation energies of oxygen ion through the $\beta$-cristobalite layer were obtained by the use of a derived equation.

  • PDF

Sol-Gel법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$계 다공성 결정화 유리의 제조 : (I) Sol-Gel 방법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$계 다공성 겔체의 제조 (Preparation of Glass-Ceramics in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Technique : (I) Preparation of Porous Monolithic Gel in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Method)

  • 조훈성;양중식;권창오;이현호
    • 한국세라믹학회지
    • /
    • 제30권7호
    • /
    • pp.535-542
    • /
    • 1993
  • It was investigated in this study that a preparation method, activation energy, surface area, pore volume, pore size distribution and DTA analysis of the dry gel in process of producing monolithic porous gel in Li2O-Al2O3-TiO2-SiO2 system by the sol-gel technique using metal alkoxides. Activation energy for gellation according to the variation of water concentration and the kind of catalysts ranged from 10 to 20kcal/mole. Monolithic dry gels were prepared after drying at 9$0^{\circ}C$ when the amount of water for gellation was 4~8 times more than the stoichiometric amount, that was necessary for the full hydrolysis of the mixed metal alkoxide. The specific surface area, the pore volume, the average pore radius of the dried gel at 18$0^{\circ}C$ according to the various kinds of catalyst were about 348~734$m^2$/g, 0.35~0.70ml/g and 10~35$\AA$, respectively. It showed that the dry gels were porous body. As a result ofthe analysis of DTA, it was confirmed that the exothermaic peaks at 715$^{\circ}C$ and 77$0^{\circ}C$ was clue to the crystallization of dried gel.

  • PDF

Processing of Cellular SiC Ceramics Using Polymer Microbeads

  • Lee, Sung-Hee;Kim, Young-Wook
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.458-462
    • /
    • 2006
  • A simple pressing process using a SiC powder, $Al_2O_3-Y_2O_3$ sintering additive, and polymer microbeads for fabricating cellular SiC ceramics is demonstrated. The strategy for making the cellular ceramics involves: (i) forming certain shapes using a mixture of a SiC powder, $Al_2O_3-Y_2O_3$ sintering additive, and polymer microbeads by pressing; (ii) heat-treatment of the formed body to burn-out the microbeads; and (iii) sintering the body. By controlling the microsphere content and sintering temperature, it was possible to adjust the porosity in a range of 16% to 69%. The flexural and compressive strengths of cellular SiC ceramics with $\sim$40% porosity were $\sim$60 MPa and $\sim$160 MPa, respectively.

Sol-Gel 법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$ 계 다공성 결정화 유리의 제조 : (II) Sol-Gel 법에 의해 제조된 $Li_2O-Al_2O_3-TiO_2-SiO_2$ 계 괴상겔의 결정화 (Preparation of Glass-Ceramics in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Technique : (II) Crystallization of $Li_2O-Al_2O_3-TiO_2-SiO_2$ Monolithic Gel Prepared by Sol-Gel Method)

  • 조훈성;양중식
    • 한국세라믹학회지
    • /
    • 제32권4호
    • /
    • pp.507-515
    • /
    • 1995
  • The monolithic dry gels of the Li2O-Al2O3-TiO2-SiO2 system were prepared by the sol-gel technique using metal alkoxides as starting materials to obtain monolithic glass-ceramics at low temperature without melting. Activation energy for the crystal growth of the gel with 6.05% TiO2, nucleating ageng, for the preparation of Li2O-Al2O3-TiO2-SiO2 system glass-ceramic was 101.14kcal/mol. As a result of the analysis of DTA & XRD, it was confirmed that the crytallization of Li2O-Al2O3-TiO2-SiO2 system glass-ceramic was the most efficient when 6.05% TiO2, nucleating agent, was added. $\beta$-eucryptite solid solution crystals and $\beta$-spodumene solid solution crystals were detected in the sample heat treated above 85$0^{\circ}C$. The sintered gel heat treated at 85$0^{\circ}C$ had the specific surface area of 185$m^2$/g, the pore volume of 0.19cc/g and the average pore radius of 20.8$\AA$. This shows that the sintered gel is also comparatively porous material. In temperature range of 25~85$0^{\circ}C$ thermal expansion coefficient of the specimen which was crystallized for 10hrs at 85$0^{\circ}C$ was 6.7$\times$10-7/$^{\circ}C$, which indicated that the crystallized specimen was turned out to be the glass-ceramic with low thermal expansion.

  • PDF

단결정 6H-SiC의 광전화학습식식각에 대한 연구 (Study on Photoelectrochemical Etching of Single Crystal 6H-SiC)

  • 송정균;정두찬;신무환
    • 한국전기전자재료학회논문지
    • /
    • 제14권2호
    • /
    • pp.117-122
    • /
    • 2001
  • In this paper, we report on photoelectrochemical etching process of 6H-SiC semiconductor wafer. The etching was performed in two-step process; anodization of SiC surface to form a deep porous layer and thermal oxidation followed by an HF dip. Etch rate of about 615${\AA}$/min was obtained during the anodization using a dilute HF(1.4wt% in H$_2$O) electrolyte with the etching potential of 3.0V. The etching rate was increased with the bias voltage. It was also found out that the adition of appropriate portion of H$_2$O$_2$ into the HF solution improves the etching rate. The etching process resulted in a higherly anisotropic etching characteristics and showed to have a potential for the fabrication of SiC devices with a novel design.

  • PDF

다공성 실리콘 산화막의 C-V 특성 (C-V Characteristics of Oxidized Porous Silicon)

  • 김석;최두진
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.572-582
    • /
    • 1996
  • 전류밀도, 70mA/cm2와 전류인가시간, 5초, 10초 조건의 양극반응으로 다공성 실리콘을 제작하여 800~110$0^{\circ}C$에서 열산화시킨 후 AI 전극을 증착시켜 만든 MOS(Metal Oxide Semiconductor) 구조의 C-V(Capacilance-Voltage) 특성을 조사하였다. 800, 90$0^{\circ}C$의 저온과 20~30분 이내의 단시간 산화에서는 산화막의 유전상수가 보통의 열산화막보다 크게 나타나고, 산화온도가 110$0^{\circ}C$의 고온과 60분 이상의 장시간 산화의 경우에는 3.9에 근접한 값을 갖는다. 이는 다공성 실리콘 산화막내에 존재하는 산화되지 않은 silicon들에 의한 효과와 표면적 증가에 의한 정전용량의 증가 효과가 복합적으로 작용하는 것이 그 원인이라 생각된다.

  • PDF

다공질 Ni 및 Ni-Cr으로 강화한 AC4C 복합재료의 제조 및 특성연구 (A Study for Characteristic and Manufacturing of Porous Ni/AC4C and Ni-Cr/AC4C Composites)

  • 김용현;김억수;여인동;이광학
    • 한국주조공학회지
    • /
    • 제20권1호
    • /
    • pp.21-28
    • /
    • 2000
  • Ni and Ni-Cr porous metals which are estimated to be easy to fabricate by squeeze casting are used as strengtheners for composite materials. As a matrix material, Al-7%wtSi-0.3 wt%Mg(AC4C) has been used. In case of Ni/AC4C and Ni-Cr/AC4C composite, $750^{\circ}C$ melt temperature and minimum 25 MPa squeezing pressure are needed to produce sound composite materials. The observation of interfacial reaction zone at various heat treatment condition showed that solutionizing temperature of above 520^{\circ}C$, the interfacial reaction zone increased proportionally with increasing heat treatment tim and reaction products formed by interfacial reaction are mainly composed of $Al_3Ni$ and $Al_3Ni_2$ phases. The tensile strength of Ni/AC4C and Ni-Cr/AC4C composite is lower than the matrix metal and this can be explained by the brittle intermetallic compounds formed at the interface of Ni and Ni-Cr reinforcements. But the properies of hardness, wear resistance and thermal expansion are better than the matrix due to the strengthening effect of Ni-Cr porous metals.

  • PDF

중간기공을 갖는 미세다공성 탄소 분리막의 기체 투과 특성 (Gas Separation Properties of Microporous Carbon Membranes Containing Mesopores)

  • 신재은;박호범
    • 멤브레인
    • /
    • 제28권4호
    • /
    • pp.221-232
    • /
    • 2018
  • Poly(imide siloxane)(Si-PI)와 polyvinylpyrrolidone (PVP)를 혼합한 고분자를 사용하여 실리카가 함유된 탄소 분리막을 제조하였다. 고분자 혼합물의 열분해에 의해 제조 된 다공성 탄소 구조의 특성은 두 고분자의 미세 상 분리 거동과 관련이 있다. Si-PI와 PVP의 고분자 혼합물의 유리 전이 온도(Tg)는 시차 주사 열량계를 사용하여 단일 Tg로 관찰되었다. 또한 $C-SiO_2$ 막의 질소 흡착 등온선을 조사하여 다공성 탄소 구조의 특성을 규명했다. Si-PI/PVP로부터 유도 된 $C-SiO_2$ 막은 IV형 등온선을 나타내었고 중간기공의 탄소 구조와 관련된 히스테리시스 루프를 가지고 있었다. 분자 여과 확인을 위해서, Si-PI/PVP의 비율과 열분해 온도 및 등온 시간과 같은 열분해 조건을 다르게 하여 $C-SiO_2$ 막을 제조하였다. 결과적으로, 120분 간의 등온 시간 동안 $550^{\circ}C$에서 Si-PI/PVP의 열분해에 의해 제조된 $C-SiO_2$ 막의 투과도는 820 Barrer ($1{\times}10^{-10}cm^3(STP)cm/cm^2{\cdot}s{\cdot}cmHg$)이었으며, $O_2/N_2$ 선택도는 14이었다.