• Title/Summary/Keyword: Porosity improvement

Search Result 172, Processing Time 0.027 seconds

A Study on Residual Stress Reduction Effect of Cold Spray Coating to Improve Stress Corrosion Cracking of Stainless Steel 304L and 316L Welds (STS304L 및 STS316L 용접부의 응력 부식 균열 개선을 위한 저온 분사 코팅의 잔류 응력 감소 효과에 대한 연구)

  • Kwang Yong Park;Deog Nam Shim;Jong Moon Ha;Sang Dong Lee;Sung Woo Cho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.102-108
    • /
    • 2023
  • A Chloride-induced stress corrosion cracking (CISCC) of austenite stainless steel in dry cask storage system (DCSS) can occur with extending service time than originally designed. Cold spray coating (CSC) not only form a very dense microstructure that can protect from corrosive environments, but also can generate compressive stress on the surface. This characteristic of CSC process is very helpful to increase the resistance for CISCC. CSC with several powders, such as 304L, 316L and Ni can be optimized to form very dense coating layer. In addition, the impact energy generated as the CSC powder collides with the surface of base metal at a speed of Mach 2 or more can remove the residual tensile stress of welding area and serve the compress stress. CSC layers include no oxidation and no contamination with under 0.2% porosity, which is enough to protect from the penetration of corrosive chloride. Therefore, the CSC coating layer can be accompanied by a function that can be disconnected from the corrosive environment and an effect of improving the residual stress that causes CISCC, so the canister's CISCC resistance can be increased.

Experimental Study on Improving Compressive Strength of MWCNT Reinforced Cementitious Composites (MWCNT 보강 시멘트 복합체의 압축강도 향상에 대한 실험적 연구)

  • Kang, Su-Tae;Park, Soon-Hong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.63-70
    • /
    • 2014
  • This experimental study was intended to improve the compressive strength of multi-walled CNT reinforced cementitious composites with efficiency. The variables considered are the degree of sonication, the amount of surfactant, the replacement ratio of silica fume, etc. Optical microscope informed that fiber dispersion of CNT was improved with the increase of sonication time, and the compressive strength was proved to be enhanced as the degree of sonication increased. When superplasticizer as a surfactant had SP/CNT ratio of 4~6, the best improvement in strength was obtained. Silica fume was shown to produce the highest compressive strength at 10% replacement. Microstructure of CNT composites was also analyzed; XRD and SEM results indicated that CNT addition hardly changed hydration products and microstructure, and MIP analysis found the reduction of total porosity as well as the increase of nano-pores with the size of tens of nm instead of the decrease of pore distribution in the region of around 10 ${\mu}m$ and 100 nm. The results of microstructure analysis explains that the strength improvement is closely related to physical contribution rather than chemical influence by adding CNT.

HVOF Thermal Spray Coating of WC-Co for Durability Improvement of High Speed Spindle (초고속 스핀들의 내구성 향상을 위한 WC-Co 분말의 HVOF 용사 코팅)

  • Kim, K.S.;Baek, N.K.;Yoon, J.H.;Cho, T.Y.;Youn, S.J.;Oh, S.K.;Hwang, S.Y.;Chun, H.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.4
    • /
    • pp.179-189
    • /
    • 2006
  • High velocity oxygen fuel(HVOF) thermal spray coating of WC-Co powder is one of the most promising candidate for the replacement of the traditional hard chrome plating and ceramics coating because of the environmental problem of the very toxic $Cr^{6+}$ known as carcinogen and the brittleness of ceramics coating. WC-Co micron and nano powder were coated by HVOF thermal spraying method for the study of durability improvement of the high speed spindle. Coatings were planned by Taguchi program for the four spray parameters of spray distance, flow rates of hydrogen, oxygen and powder feed rate. Optimal coating process was obtained by the studies of coating properties such as porosity, surface roughness, micro hardness, and micro structure. WC-Co micron and nano powder were coated on the Inconel 718 substrate by the optimal coating process obtained in this study. The wear behaviors were studied by the sliding wear tester at room temperature and at an elevated temperature of $500^{\circ}C$ for the application to high speed spindle. Sliding wear test was carried out for four most promising hard coatings of chrome coating, ceramics coatings such as $A1_2O_3,\;Cr_2O_3$ and HVOF Co-alloy T800 for the comparison of their wear behaviors. HVOF WC-Co coating was better than other coatings showing highest micro hardness of 1400 Hv and comparable friction coefficients with others. HVOF WC-Co coating is a strong candidate for the replacement of the traditional hard chrome plating for the high speed spindle.

Effect of Saline Soil and Crop Growth with Bottom Ash from Biomass Power Plant Based Wood Pellet (우드펠릿 기반 바이오매스 발전소로부터 배출된 저회를 활용한 염류토양 및 작물성장에 미치는 영향)

  • So-Hui Kim;Seung-Gyu Lee;Jin-Ju Yun;Jae-Hyuk Park;Se-Won Kang;Ju-Sik Cho
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.310-317
    • /
    • 2022
  • BACKGROUND: The salt in soil interrupts crop growth. Therefore, water resources are used to remove any salt found in the soil. However, water resources have been reduced by global warming; thus, a new study is required into reducing the salt in soil. Recently, the bottom ash (BA) of a biomass power plant was found to be similar to biochar. Hence, it can be used to remove heavy metals and wastewater through the adsorption characteristics of BA. The objective of this study was to evaluate the improvement effects on crop growth in saline soil containing the BA from biomass power plants. METHODS AND RESULTS: The effect on crop growth in the saline soil supplemented with BA was studied with the crop-planted pots, which were packed by reclaimed greenhouse soils collected from Byolyang, Suncheon. The BA application level was 25, 50, 100, 200, and 400 kg/10a (referred as BA25, BA50, BA100, BA200, and BA400, respectively). The BA increased the fresh weights of the leaf and root, while nitrogen uptake increased by approximately 24-102% and 54-77%, respectively for the lead and root. The phosphorous uptake increased by 38%, although only in the leaf of the lettuce. In the case of soil, BA increased water content, pH, EC, CEC, and NH4+ and the SAR of the soil decreased by 5-15%. The bottom ash increased the contents of Ca2+ and Mg2+, and fixed the amount of Na+. CONCLUSION(S): It was confirmed the bottom ash of a biomass power plant, based on wood pellets, improved crop growth, and increased the nutrient uptake of crops in saline soil. In addition, bottom ash, which has a wide range of porosity and high values of pH and EC, improved properties of the saline soil. However, the BA has a large amount of B, As, and heavy metals. Finally, it may require a study on the safety and contamination of heavy metals contained in the bottom ash, which would be applied in soil for a long time.

Compare Physicochemical Properties of Topsoil from Forest Ecosystems Damage patterns (산림생태계 훼손 유형별 표토의 이화학적 특성 비교)

  • Kim, Won-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.923-928
    • /
    • 2015
  • This study was carried out to evaluate the physicochemical properties of different types of topsoil in forest ecosystems by damage pattern and analyse the possibility of using the topsoil as a planting ground construction material. There were 72 samples from 36 sites of 12 damaged areas and 36 sites of 12 non-damaged areas. The results showed that the physicochemical properties of topsoil from non-damaged areas of forest ecosystems were on an average clay loam~sandy loam in soil texture, showing $0.95{\sim}1.10Mg/m^3$ in soil bulk density, $35.7{\sim}44.0m^3/m^3$ in solid phase, 56.0~64.3 in soil porosity, 8.4~35.8% in aggregate stability, 5~13 mm in soil hardness, 5.3~6.1 in pH, 0.14~0.65 dS/m in EC, 0.28~0.42% in T-N, $14{\sim}22cmol^+/kg$ in CEC, $0.15{\sim}0.31cmol^+/kg$ in Ex. $K^+$, $2.07{\sim}2.84cmol^+/kg$ in Ex. $Ca^{2+}$, $0.45{\sim}1.97cmol^+/kg$ in Ex. $Mg^{2+}$, 17~96 mg/kg in Av. $P_2O_5$ and 3.2~5.6% in OM. On the other hand, damaged areas were on an average clay loam~loamy sand in soil texture, showing $1.54{\sim}1.75Mg/m^3$ in soil bulk density, $52.8{\sim}58.0m^3/m^3$ in solid phase, 42.0~47.2 in soil porosity, 4.2~22.5% in aggregate stability, 13~25 mm in soil hardness, 4.8~5.5 in pH, 0.13~0.62 dS/m in EC, 0.02~0.12% in T-N, $5{\sim}15cmol^+/kg$ in CEC, $0.11{\sim}0.18cmol^+/kg$ in Ex. $K^+$, $0.45{\sim}2.36cmol^+/kg$ in Ex. $Ca^{2+}$, $0.39{\sim}0.96cmol^+/kg$ in Ex. $Mg^{2+}$, 15~257 mg/kg in Av. $P_2O_5$ and 0.4~2.2% in OM. After conducting a comparison of physicochemical characteristics of non-damaged forest area and damaged areas, it was found that the physicochemical characteristics of damaged areas were more deteriorated compared to that of non-damaged areas. Therefore, it is judged that it is necessary to establish countermeasures for the conservation and management of the damaged areas for topsoil recycling in the future.

Effect of Nurseries on Production of High Quality Seedlings in Panax ginseng C. A. Meyer (우량묘 생산을 위한 삼 묘대에 관한 연구)

  • Choi, Byeong-Yeol;Yoon, Seong-Tak;Kim, Young-Ho;Yi, Eun-Sub
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.3
    • /
    • pp.177-182
    • /
    • 2007
  • This study was conducted to produce high quality ginseng seedlings by improvement of the physical properties of nursery soil. In order to select optimum nursery conditions, nursery types were treated with the yangiik nursery and semi-yangiik nursery. Soil conditioners were treated with two different materials of puffed rice husks and perlite. This experiments were tested at Gyunggido Agricultural Research and Extention Services, Hwaseng, from 2003 to 2004. Soil permeability was better at the plot of yangiik nursery than that of semi-yangjik nursery, and was better at plot of puffed rice husks than that of perlite. Soil porosity was improved 2.2% at plot of yangjiik nursery compare at that of semi-yangjik nursery, and was improved 2.0% at plot of puffed rice husks compared to control. There was no difference in the number of ginseng plants per kan among treatments. Root length was longer at plot of yangjik nursery than that of semi-yangjik nursery. More available ginseng plants per kan were obtained from the plot of yangjik nursery by more 252 seedlings than that of semi-yangjik nursery, but there was no significant difference between soil conditioners. The number of available seedlings per kan produced from yangjik nursery was 21.7% higher than those produced by semi-yangjik nursery. The number of available seedlings per kan produced from plot of puffed rice husks was 16.3% higher than that of control.

A Study on the Degradation Properties of DGEBA/TETA Epoxy System for Restoration of Ceramics by Temperature (도자기 복원용 DGEBA/TETA Epoxy계 수지의 온도에 의한 열화 특성 연구)

  • Nam, Byeong Jik;Jang, Sung Yoon
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.373-386
    • /
    • 2015
  • This study identified degradation properties by temperature stress with Araldite$^{(R)}$ AY103-1/HY956 used for ceramics. Tensile and compressive strength of durability increased for 6,480 hours at temperature of $34{\sim}45^{\circ}C$. In stability of external stress and temperature, compressive strength is superior to tensile strength, it requires conservation plans considering strength properties and stress of restoration materials. The tensile shear strength of adhesion properties decreased for 4,320 hours at temperature of $40{\sim}60^{\circ}C$. In ceramics with porosity, environments under isothermal-isohumidity are important because interfacial properties of adherend are concerned with performance variation. Glossiness decreased for 6,480 hours at temperature of $34{\sim}45^{\circ}C$ and color difference increased. Gloss stability was superior and color stability was weak, which requires improvement of optical properties. In artifacts on display in museums, there is concern about temperature rise on restoration materials by lighting therefore, it needs to minimize change in physical properties by exposure environments.

A Study on the Development Lightweight Aggregate using Recycled-Paint for Reduction in Freezing Ground (단열골재 개발을 통한 동토방지 기술개발에 관한 연구)

  • Moon, Jong-Wook;Back, Min-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.47-54
    • /
    • 2010
  • This study is progressed function ratio, it's trued taste by an experiment to present data for human work light weight aggregate development that use clink ash progressed liquid limit, small success limit, wear loss in quantity, sand equivalent, sieve cutting examination. 80:20's match of function rain examination is 1.4, and that use rubble aggregate as recyeled-panit lightweight aggregate's capacity ratio increases by 1.0 increase of function rain many. Also, examination multiplied delicate flavor gradually according to increase of the mixing rate, and absorption coefficient increased. This is judged by phenomenon that appear by special quality upper recycled-panit of polystyrene bid and porosity's increase between lightweight aggregate. It is case that use aggregate of wear loss in quantity is 13.5 in sand equivalent and a wear loss in quantity experiment and although case that mix 20% increases by 14.4, this phenomenon by weak tissue of lightweight aggergate be judged. When it's as a these experiment, the statue prevention floor of a street improvement specifications is prescribing so that satisfy by sand equivalent 20, CBR 10. This is showed result that this satisfies in quality standard all in match experiment ago that see.

The Thermal Conduction Property of Structural Concrete using Insulation Performance Improvement Materials (단열성능향상 재료를 사용한 구조용 콘크리트의 열전도 특성)

  • Park, Young-Shin;Kang, Min-Gi;Kim, Jung-Ho;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The part of a building with the biggest energy loss is the exterior and many studies are actively conducted to reduce the energy loss on that part. However, most studies consider the window frames and insulation materials, but many studies do not discuss the concrete that takes more than 70% of the exterior. In order to minimize the energy loss of buildings, it is necessary to enhance the concrete's insulation performance and studies need to be conducted on this. Therefore, this study used a micro foam cell admixture, calcined diatomite powder, and lightweight aggregates as a part of a study to develop a type of concrete with improved insulation performance that has twice higher thermal conductivity compared to concrete. It particularly secured the porosity inside concrete to lower thermal conductivity. As a result of the experiment, the slump and air capacity showed fair results, but all mixtures containing micro foaming agent showed 14.3~35.1% lower mass per unit of volume compared to regular concrete. Compressive strength decreased slightly due to the materials used to improve the insulating performance, but it all satisfied this study's target strength(24MPa). Thermal conductivity was up to twice higher than that of regular concrete.

Biological Activities of HA-coated Zirconia (HA-coated Zirconia의 생물학적 활성도에 관한 연구)

  • Nam, Suk-Woo;Kim, Hae-Won;Kim, Hyoun-Ee;Yang, Seung-Min;Shin, Seung-Youn;Lee, Yong-Moo;Chung, Chong-Pyoung;Han, Soo-Boo;Choi, Sang-Mook;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • Hydroxyapatite(HA) has been extensively used as bone graft materials and tooth implant surface coating materials because of its biocompatibility and osteoconductive properties. However, as HA is intrinsically poor in mechanical properties, zirconia($ZrO_2$) was incorporated with HA as reinforcing phases for improvement of mechanical properties. The purpose of this study was to investigate the biological activities of HA-coated zirconia through the cell proliferation test, measurements of alkaline phosphatase activity, and histologic examination. Four kinds of tested blocks were prepared according to the pore size (300-500${\mu}m$/500-700${\mu}m$) and the porosity (70%/90%). Cell proliferation and alkaline phosphatase activity was measured at 1, 7, 14 days. The number of cells proliferate after 7, 14 days were significantly increased in all groups when compared with that of the first day, but there was no significant difference between the 4 groups at each time period. At the 7 day, alkaline phosphatase activities of cells cultured in 4 groups were higher than that of the first day, but there was no significant difference between the 4 groups at each time period. The human gingival fibroblast and MG 63 cell was used to evaluate the cell cytotoxicity using MTT test. The materials tested in the current study turned out to be non-cytotoxic. In histologic examination(SEM), at 1 day there were many cells attached on the surfaces of all kinds of tested blocks. The number of cells were increased over time. At the 14 day, there were more cells proliferated than 1 day and some of the pores of blocks were partially filled with the proliferated cells. The in vitro response of osteoblast-like cells to the HA-coated zirconia showed comparable effect on transformation comparable to hydroxyapatite.