• Title/Summary/Keyword: Porosity distribution

Search Result 494, Processing Time 0.027 seconds

Al-7020의 Pulse-GMA용접에 관한 연구 2

  • 김재웅;허장욱;나석주;백운형
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.54-62
    • /
    • 1988
  • Major problems in welding Al-7020 include shrinkage, rpopositgy in welds and loss of strength in the heat affected zone. Thus it is important to examine the mechanical properties and reliability of welds. In this study, a series of experiments was carried out to determine the mechanical properties such as micro-hardness distribution, tensile strength, porosity and residual stress distribution of the Al-7020 weldment made by pulse-GMA welding. The resuts of the experiemnts are as folows. 1) The micro-hardness of weld metal and heat affected zone was lower than that of the base metal. 2) The tensile strength of the deposited metal was much lower than that of the base metal. 3) The porrosity in weld metal zone was negligible under the adopted conditsion of experiemnts. 4) The residual stress in the weld metal was lower than that of the heat affected zone, because the weld metal was softened. And the mciro-hardness distribution, the tensile strength and the residual stess distribution of the weldment in the as-welded condition were compared with those of the weldment after heat treatment.

  • PDF

Prediction Method for Fire Load Prediction of Bedding and Bags Using a Standard Normal Distribution (정규분포를 활용한 이불과 가방에 대한 화재 하중 예측 방안 연구)

  • Kim, Hyun-Do;Nam, Dong-Koon;Cho, Sung-Woo
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.7-14
    • /
    • 2015
  • This study suggests basic data for fire-resistant compartments to prevent fires from spreading in a traditional markets. As representative combustible goods handled in traditional markets, bedding and bags were chosen. The fire loads could be calculated using the porosity of the materials based on a standard normal distribution. The bedding and bag porosity were 98.7%, and 94.39%, respectively. The the fire load of bedding is $29.9kg/m^2$, and that of bags is $65.61kg/m^2$.

Sensitivity Analysis of Dry/Wet Algorithm for 2-Dimensional Finite Element Analysis (2차원 유한요소해석을 위한 마름/젖음 알고리듬의 민감도 분석)

  • Han, Kun-Yeun;Kim, Sang-Ho;Choi, Seung-Yong;Hwang, Jae-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.827-831
    • /
    • 2009
  • Recently, frequency occurring flood and drought has increased the necessity of an effective water resources control and management of river flows. Therefore, the simulation of the flow distribution in natural rivers is great importance to the solution of a wide variety of practical flow problems in water resources engineering. However The serious problem facing two-dimensional hydraulic model is the treatment of wet and dry areas. The objective of this study is to investigate the wet and dry parameters that have direct relevance to model performance in situations where inundation of initially dry areas occurs. Several numerical simulations were carried out, which examined the performance of the marsh porosity method for the purpose of sensitivity analysis. Experimental channel and a variety of channel were performed for model tests. The results were compared with those of the observation data and simulation data of existing model. The RMA-2 model displayed reasonable flow distribution compare to the observation data and simulation data of existing model in dry area for application of natural river flow. As a result of this study, effectively applied marsh porosity method provide a reliable results for flow distribution of wet and dry area, it could be further developed to basis for extending to water quality and sediment transport analysis.

  • PDF

Pore Size and its Distribution as a Function of Sintered Density of UO2-20 wt%CeO2Pellets (UO2-20 wt%CeO2소결체의 밀도에 따른 기공크기 및 분포)

  • 나상호;김기홍;김시형;이영우;유명준
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.572-576
    • /
    • 2003
  • Open/closed porosity, pore size and its distribution and pore type as a funtion of sintered density of UO$_2$-20 wt%CeO$_2$ pellets were investigated. Pore appeared almost closed-type with the density above 96% of the theoretical density. Bimodal pore size distribution was observed regardless of the sintered density, but the number of pore decreased with increasing the sintered density. The shape of pore was changed from irregular shape to round type with increasing the sintered density.

Mechanical behavior of RC beams bonded with thin porous FGM plates: Case of fiber concretes based on local materials from the mountains of the Tiaret highlands

  • Benferhat Rabia;Tahar Hassaine Daouadji;Rabahi Abderezak
    • Coupled systems mechanics
    • /
    • v.12 no.3
    • /
    • pp.241-260
    • /
    • 2023
  • The objective of this study is to evaluate the effects of adding fibers to concrete and the distribution rate of the porosity on the interfacial stresses of the beams strengthened with various types of functionally graded porous (FGP) plate. Toward this goal, the beams strengthened with FGP plate were considered and subjected to uniform loading. Three types of beams are considered namely RC beam, RC beam reinforced with metal fibers (RCFM) and RC beam reinforced with Alfa fibers (RCFA). From an analytical development, shear and normal interfacial stresses along the length of the FGP plates were obtained. The accuracy and validity of the proposed theoretical formula are confirmed by the others theoretical results. The results showed clearly that adding fibers to concrete and the distribution rate of the porosity have significant influence on the interfacial stresses of the beams strengthened with FGP plates. Finally, parametric studies are carried out to demonstrate the effect of the mechanical properties and thickness variations of FGP plate, concrete and adhesive on interface debonding, we can conclude that, This research is helpful for the understanding on mechanical behavior of the interface and design of the FRP-RC hybrid structures.

Comparison of Wave Pressure Acting on the Front Wall According to the Porosity of Caisson Breakwater Having the Cap of Wave Chamber (유수실 상부 덮개가 있는 케이슨 방파제의 유공률에 따른 전면벽 작용 파압 비교)

  • Oh, Sang-Ho;Ji, Chang-Hwan;Oh, Young Min;Jang, Se-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.573-584
    • /
    • 2013
  • This study experimentally investigated the change in distribution of wave pressure on the front wall according to the variation of the front wall porosity of the caisson breakwater having the cap of wave chamber. First, the wave pressure for the non-porous caissson corresponding to zero porosity was measured and compared with the pressure formula suggested by Goda(1974). The analysis showed that the measured pressure distribution fairly well agreed with the Goda formula, which confirmed the accurate measurement of wave pressure in the present experiment. In case of the porous caisson, meanwhile, the experiment was performed by varying the front wall porosity as 0.2, 0.25, and 0.3. The wave pressure distribution at the front wall showed little difference according to the porosity for most of the test wave conditions, whereas the pressure slightly increased with the porosity for some test waves whose wave heights and periods were relatively large. However, the difference according to the porsosity was insignificant for the wave force at the front wall.

Effect of Strontium Carbonate Content on Flexural Strength of Clay-Based Membrane Supports

  • Eom, Jung-Hye;Kim, Young-Wook;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.467-472
    • /
    • 2015
  • The effect of $SrCO_3$ content on the microstructure, porosity, flexural strength, and pore size distribution of clay-based membrane supports was investigated. Green compacts prepared from low cost materials such as kaolin, bentonite, talc, sodium borate, and strontium carbonate were sintered at $1000^{\circ}C$ for 8 h in air. It was possible to control the porosity of the clay-based membrane supports within the range of 33% to 37% by adjusting the $SrCO_3$ content. The flexural strength of the clay-based membrane supports was found to strongly depend on their porosity. In turn, the porosity was affected by the $SrCO_3$ content. The average pore size and flexural strength of the clay-based membrane supports containing 4 wt% $SrCO_3$ were $0.62{\mu}m$ and 33 MPa at 34% porosity.

Influence of the porosities on the free vibration of FGM beams

  • Hadji, L.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.273-287
    • /
    • 2015
  • In this paper, a free vibration analysis of functionally graded beam made of porous material is presented. The material properties are supposed to vary along the thickness direction of the beam according to the rule of mixture, which is modified to approximate the material properties with the porosity phases. For this purpose, a new displacement field based on refined shear deformation theory is implemented. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present refined shear deformation beam theory, the equations of motion are derived from Hamilton's principle. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

Stability of the porous orthotropic laminated composite plates via the hyperbolic shear deformation theory

  • Ferruh Turan
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.145-161
    • /
    • 2023
  • This study investigates the influences of porosity on the stability of the orthotropic laminated plates under uniaxial and biaxial loadings based on the hyperbolic shear deformation theory. Three different porosity distribution are considered with three specific functions through the plate thickness. The stability equations of porous orthotropic laminated plates are derived by the virtual work principle. Applying the Galerkin method to partial differential equations, the critical buckling load relation of porous orthotropic laminated plates is obtained. After validating the accuracy of the proposed formulation in accordance with the available literature, a parametric analysis is performed to observe the sensitivity of the critical buckling load to shear deformation, porosity, orthotropy, loading factor, and different geometric properties.

Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads

  • Chinnapandi, Lenin Babu Mailan;Pitchaimani, Jeyaraj;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.829-843
    • /
    • 2022
  • This manuscript work presents a comprehensive continuum model capable to investigate the effect of porosity on vibro-acoustic behaviour of functionally graded (FG) beams resting on an elastic foundation subjected to thermal and mechanical loadings. Effects of uniform temperature rise and edge compressive load on the sound radiation characteristics are studied in a comparative manner. The numerical analysis is carried out by combining finite element method with Rayleigh's integral. Detailed parametric studies are accomplished, and influences of power law index, porosity volume, porosity distribution and boundary conditions on the vibro-acoustic response characteristics are analyzed. It is found that the vibro-acoustic response under mechanical edge compression is entirely different compared to from that under the thermal load. Furthermore, nature of grading of porosity affects the sound radiation behaviour for both the loads. The proposed model can be used to obtain the suppression performance of vibration and noise FG porous beams under thermal and mechanical loads.