• Title/Summary/Keyword: Porosity coefficient

Search Result 322, Processing Time 0.029 seconds

Porosity-dependent vibration investigation of functionally graded carbon nanotube-reinforced composite beam

  • Abdulmajeed M. Alsubaie;Ibrahim Alfaqih;Mohammed A. Al-Osta;Abdelouahed Tounsi;Abdelbaki Chikh;Ismail M. Mudhaffar;Saeed Tahir
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • This work utilizes simplified higher-order shear deformation beam theory (HSDBT) to investigate the vibration response for functionally graded carbon nanotube-reinforced composite (CNTRC) beam. Novel to this work, single-walled carbon nanotubes (SWCNTs) are distributed and aligned in a matrix of polymer throughout the beam, resting on a viscoelastic foundation. Four un-similar patterns of reinforcement distribution functions are investigated for the CNTRC beam. Porosity is another consideration taken into account due to its significant effect on functionally graded materials (FGMs) properties. Three types of uneven porosity distributions are studied in this study. The damping coefficient and Winkler's and Pasternak's parameters are considered in investigating the viscosity effect on the foundation. Moreover, the impact of different parameters on the vibration of the CNTRC beam supported by a viscoelastic foundation is discussed. A comparison to other works is made to validate numerical results in addition to analytical discussions. The findings indicate that incorporating a damping coefficient can improve the vibration performance, especially when the spring constant factors are raised. Additionally, it has been noted that the fundamental frequency of a beam increases as the porosity coefficient increases, indicating that porosity may have a significant impact on the vibrational characteristics of beams.

The Influence of Porosity on the Characteristics of Porous Concrete (공극률 변화에 따른 포러스콘크리트의 특성)

  • Jung, Yong-Wook;Lee, Seung-Han;Jang, Suk-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.691-694
    • /
    • 2005
  • The present study was to examine the influence of porosity and moisture content on the water permeability, strength and plant-growth characteristics of porous concrete. The result of the experiment verified that the coefficient of permeability of porous concrete with porosity between $30\%\;and\;36\%$ increased by 2cm/sec and the compressive strength decreased 1MPa at every $3\%$ increase of porosity. In addition, the plant growth of porous concrete showed 5cm at $36\%$ porosity and 2.5cm at $30\%$ porosity respectively. Thus, the higher the porosity, the more the plant grew. When $2\%$ moisture content was used in porous concrete with the same porosity, the plant growth was accelerated two times faster than the case without it.

  • PDF

Sloshing Damping in a Swaying Rectangular Tank Using a Porous Bulkhead (투과성 격벽을 이용한 수평 운동하는 사각형 탱크내의 슬로싱 감쇠)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.228-236
    • /
    • 2018
  • The performance of a porous swash bulkhead for the reduction of the resonant liquid motion in a swaying rectangular tank was investigated based on the assumption of linear potential theory. The Galerkin method (Porter and Evans, 1995) was used to solve the potential flow model by adding a viscous frictional damping term to the free-surface condition. By comparing the experimental results and the analytical solutions, we verified that the frictional damping coefficient was 0.4. Darcy's law was used to consider the energy dissipation at a porous bulkhead. The tool that was developed with a built-in frictional damping coefficient of 0.4 was confirmed by small-scale experiments. Using this tool, the free-surface elevation, hydrodynamic force (added mass, damping coefficient) on a wall, and the horizontal load on a bulkhead were assessed for various combinations of porosity and submergence depth. It was found that the vertical porous bulkhead can suppress sloshing motions significantly when properly designed and by selecting the appropriate porosity(${\approx}0.1$) and submergence depth.

Analysis of Correlation between Flexural Strength and Pore Characteristics on CFRP Rebar as Fabrication Method (탄소보강근의 제조 조건에 따른 휨강도와 기공 특성과의 상관성 분석)

  • Kim, Nam-Il;Kwon, Do-Young;Chu, Yong-Sik
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.328-333
    • /
    • 2022
  • In this study, the fabrication conditions of CFRP rebar were controlled to derive the correlation between flexural strength and pore characteristics. The fabrication conditions of CFRP rebar were adjusted for presence or absence of rib, resin temperature, and curing furnace temperature. Flexural strength and pore characteristics of fabricated CFRP rebar were analyzed. The flexural strength of CFRP rebar was changed depending on the fabrication condition, such as the presence or absence of rib, the resin temperature, and the curing furnace temperature. It was confirmed that the flexural strength of CFRP rebar was significantly lowered when the rib was not wound. As a result of Nano X-ray CT analysis, the max. pore diameter was shown in CFRP rebar prepared at a resin temperature of 60℃. According to optical microscopic analysis, the maximum porosity was 6.89% in No. 1, and the minimum porosity was 2.88% in No. 7. The correlation coefficient between porosity used optical microscopy and flexural strength was -0.64, which was higher than the correlation coefficient between porosity or pore size used Nano X-ray CT and flexural strength.

Variation of Manning's Coefficient due to Vegetation in Open Channel (개수로내 식생에 의한 Manning계수의 변화)

  • Kwon, Kab-Keun;Kim, Hyung-Seok;Yoon, Sung-Bum
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.401-404
    • /
    • 2008
  • The vegetation in the surrounding area of river is a primary factor to increase water level during flood. The influence of vegetation on the river flow in a bank has been investigated by using a hydraulic experiment. For a hydraulic experiment square-shaped piers are used as a model of unsubmerged rigid vegetation in a open channel. For fully developed uniform flows, the water elevation of the experiment was measured as varying the interval of piers and the porosity which presents the fraction of water flowing area in the cross-sectional area. The Manning's roughness coefficient, which implicates energy losses due to the vegetation, was obtained by using the experimental data. As a result, the energy losses were varied when the distance of piers and the porosity of area were changed, and the Manning's coefficient increased nonlinearly when a water elevation increased.

  • PDF

Durability of Alkali-Activated Blast Furnace Slag Concrete: Chloride Ions Diffusion (알칼리 활성 슬래그 콘크리트의 내구성: 콘크리트의 염소이온 확산)

  • Nam, Hong Ki;Kyu, Park Jae;San, Jung Kyu;Hun, Han Sang;Hyun, Kim Jae
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.120-127
    • /
    • 2015
  • The aim of the present study is to investigate some characteristics of concrete according to addition of blast furnace slag and alkali-activator dosages. Blast furnace slag was used at 30%, 50% replacement by weight of cement, and liquid sulfur having NaOH additives was chosen as the alkaline activator. In order to evaluate characteristics of blast furnace slag concrete with sulfur alkali activators, compressive strength test, total porosity, chloride ions diffusion coefficient test were performed. The early-compressive strength characteristics of blast furnace slag concrete using a sulufr-alkali activators was compared with those of reference concrete and added 30, 50% blast furnace slag concrete. Also, Blast furnace slag concrete using sulfur-alkali activators enhanced the total porosity, chloride ions diffusion coefficient than two standard concrete. Alkali-activated blast furnace slag concrete was related to total porosity, compressive strength and chloride ions diffusion coefficient each others. As a result, it should be noted that the sulfur-alkali activators can not only solve the demerit of blast furnace slag concrete but also offer the chloride resistance of blast furnace slag concrete using sulfur alkali activators to normal concrete.

Simplified Carbonation Model Considering Ca(OH)2 Solubility and Porosity Reduction (수산화칼슘 용해도와 공극률 감소를 고려한 간략화 된 탄산화 모델)

  • Lee, Yun;Kwon, Seung-Jun;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.128-138
    • /
    • 2015
  • Carbonation is one of the most critical deterioration phenomena to concrete structures exposed to high $CO_2$ concentration, sheltered from rain. Lots of researches have been performed on evaluation of carbonation depth and changes in hydrate compositions, however carbonation modeling is limitedly carried out due to complicated carbonic reaction and diffusion coefficient. This study presents a simplified carbonation model considering diffusion coefficient, solubility of $Ca(OH)_2$, porosity reduction, and carbonic reaction rate for low concentration. For verification, accelerated carbonation test with varying temperature and MIP (Mercury Intrusion Porosimetry) test are carried out, and carbonation depths are compared with those from the previous and the proposed model. Field data with low $CO_2$ concentration is compared with those from the proposed model. The proposed model shows very reasonable results like carbonation depth and consuming $Ca(OH)_2$ through reduced diffusion coefficient and porosity compared with the previous model.

Influence of surface roughness and porosity on the hydrogen sorption speed of getter (표면 거칠기 및 다공도가 게터의 수소 흡착속도에 미치는 영향)

  • In S. R.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.171-179
    • /
    • 2005
  • The influence of the surface roughness and the porosity on the apparent sticking coefficient of the getter was determined quantitatively by Monte Carlo simulation. The sorption characteristics of the getter was investigated by solving numerically the particle balance equation depending on the sticking probability and diffusivity.

Wave propagation of graphene platelets reinforced metal foams circular plates

  • Lei-Lei Gan;Jia-Qin Xu;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.645-654
    • /
    • 2023
  • Based on first-order shear deformation theory, a wave propagation model of graphene platelets reinforced metal foams (GPLRMFs) circular plates is built in this paper. The expressions of phase-/group- velocities and wave number are obtained by using Laplace integral transformation and Hankel integral transformation. The effects of GPLs pattern, foams distribution, GPLs weight fraction and foam coefficient on the phase and group velocity of GPLRMFs circular plates are discussed in detail. It can be inferred that GPLs distribution have great impacts on the wave propagation problems, and Porosity-I type distribution has the largest phase velocity and group velocity, followed by Porosity-III, and finally Porosity-II; With the increase of the GPLs weight fraction, the phase- and group- velocities for the GPLRMFs circular plate will be increased; With the increase of the foam coefficient, the phase- and group- velocities for the GPLRMFs circular plate will be decreased.

Free vibration analysis of FG porous spherical cap reinforced by graphene platelet resting on Winkler foundation

  • Xiangqian Shen;Tong Li;Lei Xu;Faraz Kiarasi;Masoud Babaei;Kamran Asemi
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.11-26
    • /
    • 2024
  • In this study, free vibration analysis of FG porous spherical cap reinforced by graphene platelets resting on Winkler-type elastic foundation has been surveyed for the first time. Three different types of porosity patterns are considered for the spherical cap whose two types of porosity patterns in the metal matrix are symmetric and the other one is uniform. Besides, five GPL patterns are assumed for dispersing of GPLs in the metal matrix. Tsai-Halpin and extended rule of the mixture are used to determine the Young modulus and mass density of the shell, respectively. Employing 3D FEM elasticity in conjunction with Hamilton's Principle, the governing motion equations of the structure are obtained and solved. The impact of various parameters including porosity coefficient, various porosity distributions in conjunction with different GPL patterns, the weight fraction of graphene Nano fillers, polar angles and stiffness coefficient of elastic foundation on natural frequencies of FG porous spherical cap reinforced by GPLs have been reported for the first time.