• 제목/요약/키워드: Pores/Porosity

검색결과 317건 처리시간 0.021초

Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns

  • Liu, Wen-qi;Liu, Shan-jun;Fan, Ming-yu;Tian, Wei;Wang, Ji-peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제35권2호
    • /
    • pp.295-306
    • /
    • 2020
  • This paper deals with free vibration analysis of non-uniform column resting on elastic foundations and subjected to follower force at its free end. The internal pores and graphene platelets (GPLs) are distributed in the matrix according to different patterns. The model is proposed with material parameters varying in the thickness of column to achieve graded distributions in both porosity and nanofillers. The elastic modulus of the nanocomposite is obtained by using Halpin-Tsai micromechanics model. The differential quadrature method as an efficient and accurate numerical approach is used to discretize the governing equations and to implement the boundary conditions. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution. Results show that for better understanding of mechanical behavior of nanocomposite column, it is crucial to consider porosities inside the material structure.

Effect of overpressurization on rim porosity in the high burnup $UO_2$ fuel

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(2)
    • /
    • pp.67-73
    • /
    • 1997
  • By introducing the concept of overpressurization of rim pores due to dislocation punching, the total pressure exerted on the rim pores is estimated. Then this concept is combined with the assumption that all the fission gases produced in the rim region are retained in the rim region to calculate the rim porosity. Rim porosities calculated in this way are compared with measured data, which produces reasonable agreement. Finally a correlation for the thermal conductivity of the rim region is obtained using the hypothesis that the rim region consists of pores and fully dense material of UO$_2$.

  • PDF

Influence of Heating Rate and Temperature on Carbon Structure and Porosity of Activated Carbon Spheres from Resole-type Phenolic Beads

  • Singh, Arjun;Lal, Darshan
    • Carbon letters
    • /
    • 제10권3호
    • /
    • pp.181-189
    • /
    • 2009
  • Activated carbon spheres (ACS) were prepared at different heating rates by carbonization of the resole-type phenolic beads (PB) at $950^{\circ}C$ in $N_2$ atmosphere followed by activation of the resultant char at different temperatures for 5 h in $CO_2$ atmosphere. Influence of heating rate on porosity and temperature on carbon structure and porosity of ACS were investigated. Effect of heating rate and temperature on porosity of ACS was also studied from adsorption isotherms of nitrogen at 77 K using BET method. The results revealed that ACS have exhibited a BET surface area and pore volume greater than $2260\;m^2/g$ and $1.63\;cm^3/g$ respectively. The structural characteristics variation of ACS with different temperature was studied using Raman spectroscopy. The results exhibited that amount of disorganized carbon affects both the pore structure and adsorption properties of ACS. ACS were also evaluated for structural information using Fourier Transform Infrared (FTIR) Spectroscopy. ACS were evaluated for chemical composition using CHNS analysis. The ACS prepared different temperatures became more carbonaceous material compared to carbonized material. ACS have possessed well-developed pores structure which were verified by Scanning Electron Microscopy (SEM). SEM micrographs also exhibited that ACS have possessed well-developed micro- and meso-pores structure and the pore size of ACS increased with increasing activation temperature.

고온 단열벽돌의 열전도성에 미치는 미세구조의 영향 (Microstructural Effects Influencing the Thermal Conductivity of High-Temeprature Insulation Firebricks)

  • 장복기;임재봉
    • 한국세라믹학회지
    • /
    • 제27권6호
    • /
    • pp.729-734
    • /
    • 1990
  • The microstructural dependence of thermal conductivity of a high-alumina (ca. 70%) heat-insulating frebricks(ca. 75%porosity) was investigated under special consideration of the tailored-pore shape effects. Pores different shape could be incorporated into the insulators through pore formers : Styrofoam produces spherical pores while saw dust results in parallel plate pores. Concerning the pore-shape effectiveness of thermal insulation, the specimen with irregular plate pores showed much lower values of heat conductivity than those with spherical pores, the values being 0.31 to 0.38 at $600^{\circ}C$ and 0.35 to 0.47 at 100$0^{\circ}C$, respectively. On the contrary, however, other material properties such as strength and softening temeprature under load were turned out to be better in the case of the spherical pores.

  • PDF

슬러리 코팅 공정을 이용한 Fe 폼의 제조에 대한 연구 (Fabrication of Fe Foam using Slurry Coating Process)

  • 윤중열;박다희;양상선;왕제필
    • 자원리싸이클링
    • /
    • 제26권6호
    • /
    • pp.97-101
    • /
    • 2017
  • 메탈폼은 매우 많은 기공을 포함하는 세포상 구조를 갖는 고체금속을 일컫는다. 특히 관통 기공 같은 개기공들은 고온용 필터 및 촉매 지지체 등으로 산업적으로 많이 사용되고 있다. 본 연구에서는 슬러리 코팅공정으로 90% 이상의 기공율과 2 mm 이상의 기공크기를 갖는 Fe 폼을 제조하였다. 이때 Fe 분말과 $Fe_2O_3$ 분말의 혼합비를 달리하여 기공율과 기공크기를 제어하였다. 이를 위해 우선 분말, 증류수 및 폴리비닐알콜(PVA)를 균일하게 혼합하여 슬러리를 제조하였다. $Fe_2O_3$ 분말의 혼합 비율이 증가할수록 PU 폼에 코팅된 슬러리의 양이 증가한 반면 Fe 폼의 수축 및 기공율은 각각 감소하였다.

Investigating dynamic stability behavior of sandwich plates with porous core based on a numerical approach

  • Zhu, Zhihui;Zhu, Meifang
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.609-615
    • /
    • 2022
  • A numerical approach for dynamic stability analysis of sandwich plates has been provided using Chebyshev-Ritz-Bolotin approach. The sandwich plate with porous core has been formulated according to a higher-order plate. All of material properties are assumed to be dependent of porosity factor which determines the amount or volume of pores. The sandwich plate has also been assumed to be under periodic in-plane loading of compressive type. It will be shown that stability boundaries of the sandwich plate are dependent on static and dynamical load factors, porosity factor, porosity variation and core thickness.

Relation Between Density and Porosity in Sintered $UO_2$ Pellets

  • Sang Ho Na;Si Hyung Kim;Young-Woo Lee;Myung June Yoo
    • Nuclear Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.433-435
    • /
    • 2002
  • The relation between sintered densities and porosities in UO$_2$ pellets is investigated. The open porosity decreases linearly up to about 95% T.D.,(theoretical density) as the sintered density increases whereas, above 96% T.D., sintered UO$_2$ pellets do not have any open pores. The fraction of open porosity to the total porosity also decreases linearly as the sintered density increases, though the slope is lower than that of open porosity and, above 95% T.D., the fraction decreases rapidly to approach a zero.

$BaTiO_3$ 세라믹의 절연파괴거동에 미치는 기공의 크기와 기공율의 영향 (Effect of pore size and porosity on electrical breakdown behaviors of $BaTiO_3$ ceramics)

  • 조경호;우동찬;남효덕;이희영
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권3호
    • /
    • pp.255-261
    • /
    • 1997
  • In this study, pore-containing barium titanate ceramics were prepared with different porosities and pore sizes, in order to better understand how porosity and pore size affect electrical breakdown of barium titanate ceramics. A granulated barium titanate powder was mixed with three grades of commercial polymer microspheres up to 11wt%. The electrical breakdown test was performed at two different temperatures of 30.deg. C(below Tc) and 150.deg. C(above Tc) for samples immersed in a silicon oil bath using a 60kV de power supply. Electrical breakdown strength of pore containing barium titanate ceramics with porosity lower than 10% decreased as pore size and porosity increased. However, above the 10% porosity region, electrical breakdown strength decreased as the pore connectivity increased. From the experimental results, an optimum electrical breakdown model is proposed in an attempt to explain the effect of pores.

  • PDF

Fabrication of Lotus Nickel Through Thermal Decomposition Method of Compounds under Ar Gas Atmosphere

  • Kim, Sang-Youl;Hur, Bo-Young;Nakajima, Hideo
    • 한국재료학회지
    • /
    • 제19권5호
    • /
    • pp.270-275
    • /
    • 2009
  • Lotus-type porous nickel with cylindrical pores was fabricated by unidirectional solidification under an Ar gas atmosphere using the thermal decomposition method of the compounds such as sodium hydroxide, calcium hydroxide, calcium carbonate, and titanium hydride. The decomposed gas does form the pores in liquid nickel, and then, the pores become the cylindrical pores during unidirectional solidification. The decomposed particles from the compounds do play a rule on nucleation sites of the pores. The behavior of pore growth was controlled by atmosphere pressure, which can be explained by Boyle's law. The porosity and pore size decreased with increasing Ar gas pressure when the pores contain hydrogen gas decomposed from calcium and sodium hydroxide and titanium hydride, ; however it they did not change when the pores contain containing carbon dioxide decomposed from calcium carbonate. These results indicate that nickel does not have the solubility of carbon dioxide. Lotus-type porous metals can be easily fabricated by the thermal decomposition method, which is superior to the conventional fabrication method used to pressurized gas atmospheres.

Mixing Rules of Young's Modulus, Thermal Expansion Coefficient and Thermal Conductivity of Solid Material with Particulate Inclusion

  • Hirata, Yoshihiro;Shimonosono, Taro
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.43-49
    • /
    • 2016
  • This analyzed a Young's modulus (E), a thermal expansion coefficient (TEC, ${\beta}$) and a thermal conductivity (${\kappa}$) of the material with simple cubic particulate inclusion using two model structures: a parallel structure and a series structure of laminated layers. The derived ${\beta}$ equations were applied to calculate the ${\beta}$ value of the W-MgO system. The accuracy was higher for the series model structure than for the parallel model structure. Young's moduli ($E_c$) of sintered porous alumina compacts were theoretically related to the development of neck growth of grain boundary between sintered two particles and expressed as a function of porosity. The series structure model with cubic pores explained well the increased tendency of $E_c$ with neck growth rather than the parallel structure model. The thermal conductivity of the three phase system of alumina-mullite-pore was calculated by a theoretical equation developed in this research group, and compared with the experimental results. The pores in the sintered composite were treated as one phase. The measured thermal conductivity of the composite with 0.5-25% porosity (open and closed pores) was in accordance with the theoretical prediction based on the parallel structure model.