• 제목/요약/키워드: Pore stress

검색결과 440건 처리시간 0.031초

Comparison of Different Permeability Models for Production-induced Compaction in Sandstone Reservoirs

  • To, Thanh;Chang, Chandong
    • 지질공학
    • /
    • 제29권4호
    • /
    • pp.367-381
    • /
    • 2019
  • We investigate pore pressure conditions and reservoir compaction associated with oil and gas production using 3 different permeability models, which are all based on one-dimensional radial flow diffusion model, but differ in considering permeability evolution during production. Model 1 assumes the most simplistic constant and invariable permeability regardless of production; Model 2 considers permeability reduction associated with reservoir compaction only due to pore pressure drawdown during production; Model 3 also considers permeability reduction but due to the effects of both pore pressure drawdown and coupled pore pressure-stress process. We first derive a unified stress-permeability relation that can be used for various sandstones. We then apply this equation to calculate pore pressure and permeability changes in the reservoir due to fluid extraction using the three permeability models. All the three models yield pore pressure profiles in the form of pressure funnel with different amounts of drawdown. Model 1, assuming constant permeability, obviously predicts the least amount of drawdown with pore pressure condition highest among the three models investigated. Model 2 estimates the largest amount of drawdown and lowest pore pressure condition. Model 3 shows slightly higher pore pressure condition than Model 2 because stress-pore pressure coupling process reduces the effective stress increase due to pore pressure depletion. We compare field data of production rate with the results of the three models. While models 1 and 2 respectively overestimates and underestimates the production rate, Model 3 estimates the field data fairly well. Our result affirms that coupling process between stress and pore pressure occurs during production, and that it is important to incorporate the coupling process in the permeability modeling, especially for tight reservoir having low permeability.

반복재하후 미액상화 풍화토 지반의 변형 거동 (Post-Cyclic Deformation Behavior of Non-Liquefied Weathered Soils)

  • 최연수;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.485-492
    • /
    • 2001
  • Weathered soil is one of the most representative soils in Korea. In this study, a series of cyclic triaxial tests was carried out to predict the post-cyclic deformation behavior of weathered soils in case of non-liquefaction. Excess pore pressure response during cyclic loading and volumetric strain during the dissipation of excess pore pressure were measured varying the confining pressure, relative density and cyclic stress ratio. Based on the test results, it Is found that the modified excess pore pressure ratio, excess pore pressure ratio normalized by cyclic stress ratio, is uniquely correlated with the number of cycles irrespective of confining pressure and cyclic stress ratio. Using the newly proposed MEPPR(modified excess pore pressure ratio) concept, it is possible to easily evaluate the excess pore pressure and the settlement of weathered soils due to cyclic loading by greatly reduced number of tests. It is also verified that the reconsolidation volumetric strain is independent of the way how the excess pore pressure was generated.

  • PDF

Analysis of permeability in rock fracture with effective stress at deep depth

  • Lee, Hangbok;Oh, Tae-Min;Park, Chan
    • Geomechanics and Engineering
    • /
    • 제22권5호
    • /
    • pp.375-384
    • /
    • 2020
  • In this study, the application of conventional cubic law to a deep depth condition was experimentally evaluated. Moreover, a modified equation for estimating the rock permeability at a deep depth was suggested using precise hydraulic tests and an effect analysis according to the vertical stress, pore water pressure and fracture roughness. The experimental apparatus which enabled the generation of high pore water pressure (< 10 MPa) and vertical stress (< 20 MPa) was manufactured, and the surface roughness of a cylindrical rock sample was quantitatively analyzed by means of 3D (three-dimensional) laser scanning. Experimental data of the injected pore water pressure and outflow rate obtained through the hydraulic test were applied to the cubic law equation, which was used to estimate the permeability of rock fracture. The rock permeability was estimated under various pressure (vertical stress and pore water pressure) and geometry (roughness) conditions. Finally, an empirical formula was proposed by considering nonlinear flow behavior; the formula can be applied to evaluations of changes of rock permeability levels in deep underground facility such as nuclear waste disposal repository with high vertical stress and pore water pressure levels.

과압밀점토의 간극수압계수에 응력이력과 시간이력이 미치는 영향 (The Effects of Stress and Time History on Pore Pressure Parameter of Overconsoldated clay)

  • 김수삼;김병일;한상재;신현영
    • 한국해안해양공학회지
    • /
    • 제14권4호
    • /
    • pp.286-294
    • /
    • 2002
  • 본 연구에서는 응력이력과 시간이력이 과압밀 상태에서의 간극수압계수, A(Skempton, 1954)에 미치는 영향에 관하여 실험적으로 규명하였다. 응력경로 회전각, 과압밀비 및 접근길이로 정의되는 응력이력과 재하속도 이력 그리고 정지기간으로 정의되는 시간이력에 따른 간극수압계수(A)의 값과 변화 양상을 보았다. 응력경로 회전각에 따른 간극수압계수(A)는 그 값과 변화 경향에서 상이하게 나타났고, A의 값에 있어서는 과압밀비 의존성을 보였지만, 변화 양상에서는 의존성을 찾아 볼 수 없었다. 접근길이에 따른 간극수압계수(A)는 초기 미소 변형률 구간을 제외하고는 큰 영향을 받지 않았다. 또한, A의 값은 재하속도 이력에 영향을 받았지만, 변화 경향은 모두 동일하게 나타났다. 마지막으로 정지기간에 따른 과압밀점토의 간극수압계수, A는 정지기간의 유무에 따라 변화 경향과 값이 큰 차이를 보이다가 일정 축차응력 또는 변형률을 넘어서면 거의 유사한 값을 나타내었다.

섬유혼합 점토의 비배수 강도 특성에 대한 연구 (Study on the Undrained Strength Characteristics of Fiber Mixed Clay)

  • 박영곤;장병욱
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.382-387
    • /
    • 1998
  • Triaxial compression tests were run to study on the undrained strength characteristics of fiber mixed kaolin clay(Hadong). The influence of various test parameters such as amount and aspect ratio(ratio of length to diameter) of fiber, confining stress was also investigated. Test results showed that the increase in aspect ratio was increased in deviator stress at failure, but no effect on pore water pressure at failure. Deviator stress at failure was also increased at 0.5% mixing ratio(weight fraction of fiber to that of soil solid) of fiber but it was, thereafter, decreased and wits reached to constant after 2% mixing ratio. On the contrary, Pore water pressure at failure was increased as mixing ratio of fiber was greater than 1%. Deviator stress and pore water pressure of both clay and fiber mixed clay(FMC) at failure were increased as confining stress was increased. Deviator stress of FMC at failure was about 10% larger than that of clay, but pore water pressure of FMC at failure was almost similar to that of clay.

  • PDF

Indentation Damage of Porous Alumina Ceramice

  • Ha, Jang-Hoon;Lee, Chul-Seung;Kim, Jong-Ho;Kim, Do-Kyung
    • 한국세라믹학회지
    • /
    • 제41권1호
    • /
    • pp.19-23
    • /
    • 2004
  • The Hertzian indentation contact damage behavior of porous alumina with controlled pore shape was investigated by experiments. Porous alumina ceramics containing well-defined pore shape, size and distribution were prepared by incorporation of fugitive spherical starch. Porous alumina with isolated pore structure was prepared with porosity range up to 30%. The indentation stress-strain curves of porous alumina were constructed. Elastic modulus and yield stress can be obtained from the stress-strain relationship. Impulse excitation method for the measurement of elastic modulus was also conducted as well as Hertzian indentation and was confirmed as a useful tool to evaluate the elasticity of highly porous ceramics. Elastic modulus of the inter-connected pore structure is more sensitive to porosity than that of the isolated pore structure. When the specimen had isolated pore structure, higher yield point was obtained than it had inter-connected pore structure. This study proposed that the elastic modiulus of porous ceramics is strongly related to not only porosity, but also the structure of pore.

반월지역 해성점토의 비배수 전단강도 특성에 관한 연구 (Study on the Undrained Shear Strength Characteristics)

  • 장병욱;박영곤
    • 한국농공학회지
    • /
    • 제36권3호
    • /
    • pp.90-99
    • /
    • 1994
  • To investigate the undrained shear strength characteristics of marine soils with high water content, high compressibility and weak bearing capacity, a series of undrained triaxial tests with pore pressure measurements on undisturbed and disturbed Banwol marine clay in normally consolidated and overconsolidated states is carried out. The results and main conclusions of this study are summarized as follows : 1 . When the consolidation pressure is increased, the maximum deviator stress of disturbed and undistubed clay in normally consolidated state is increased. Pore pressure parameters and internal friction angle of undisturbed clay are greater than those of disturbed clay. 2. The relationship between pore pressure and axial strain of undisturbed clay in normally consolidated state can be expressed as a hyperbolic function like stress-strain relation proposed by Kondner. 3. In the pore pressure-axial strain relation of disturbed clay in normally consolidated state, failure ratio R'f is greatly deviated in the range of 0.7~0.9 proposed by Christian and Desai. 4. For overconsolided clay, when overconsolidation ratio (OCR) is increased, normalized maximum deviator stress is increased and maximum pore pressure is decreased gradually. 5. Cohesion of overconsolidated clay is greater than that of nomally consolidated clay and internal friction angle slightly is decreased. 6. Pore pressure parameter at failure (Af) of overconsolidated clay is varied with OCR, Af becomes negative values with increment in OCR

  • PDF

Staged Finite Element Modeling with Coupled Seepage and Stress Analysis

  • Lee, Jae-Young
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.703-714
    • /
    • 2010
  • This paper proposes an approach for staged finite element modeling with coupled seepage and stress analysis. The stage modeling is based on the predefined inter-relationship between the base model and the unit stage models. A unit stage constitutes a complete finite element model, of which the geometries and attributes are subject to changes from stage to stage. The seepage analysis precedes the mechanical stress analysis at every stage. Division of the wet and dry zone and the pore pressures are evaluated from the seepage analysis and used in determining input data for the stress analysis. The results of the stress analysis may also be associated with the pore water pressures. For consolidation analysis, the pore pressure and the displacement variables are mixed in a coupled matrix equation. The time marching solution produces the dissipation of excess pore pressure and variation of stresses with passage of time. For undrained analysis, the excess pore pressures are computed from the stress increment due to loading applied in the unit stage and are used in revising the hydraulic head. The solution results of a unit stage are inherited and accumulated to the subsequent stages through the relationship of the base model and the individual unit stages. Implementation of the proposed approach is outlined on the basis of the core procedures, and numerical examples are presented for demonstration of its application.

포화점성토의 비배수 CREEP 성질에 의한 공극수압의 거동 (Pore Water Pressure Behavior due to Undrained Creep of Saturated Clay)

  • 강우묵;조성섭;지인택
    • 한국농공학회지
    • /
    • 제30권3호
    • /
    • pp.38-50
    • /
    • 1988
  • carried out to present a rheology model which is able to treat time-dependent properties of clay. The results were summarized as follow ; 1. The slope (a(e1)) of deviator stress in strain rate test was independent on axial strain, and pore water pressure was decreased with increment of strain rate. 2. The pore water pressure in a stress relaxation condition was not changed when the strain rate before stress relaxation was 0.05%/min., but it was increased with increment of time when the strain rate before stress relaxation was 0.2%/min 3. The greater the stress condition (q/qmax) and the strain rate before creep test became, the greater the increment rate of axial strain in creep test became. 4. SEKIGUCHI's constitutive equation was slightly overpredicted while empirical equation proposed in the study was well coincided with measured values. 5. The constitutive equation induced by a strain function could be dealed with a behavior of the pore water pressure increased with increment of elapsed time after primary consolidation.

  • PDF

응력 기반 간극수압 모델 개발 (Development of Stress Based on Pore Pressure Model)

  • 박두희;안재광;김진만
    • 한국지반공학회논문집
    • /
    • 제28권5호
    • /
    • pp.95-107
    • /
    • 2012
  • 반복하중에 의하여 유발되는 과잉간극수압 예측의 중요성은 잘 알려져 있지만 이를 고려한 유효응력해석은 수치 모델 변수 산정의 어려움으로 인하여 극히 드물게 수행되고 있다. 본 논문에서는 반복하중에 의하여 흙에 발생하는 과잉간극수압을 예측하는 새로운 응력 기반 수치적 모델을 개발하였다. 본 모델의 가장 큰 장점은 진동삼축시험으로 부터 획득된 CSR-N 곡선만으로 모든 변수를 결정할 수 있다는 점이다. 이 모델의 추가적인 장점은 모든 하중형태에 대해서 적용될 수 있으므로 시간영역 유효응력해석 프로그램에 적용될 수 있다는 점이다. 개발된 모델의 정확성은 문헌에 제시된 시험결과와 국내에서 수행된 시험결과와의 비교를 통하여 검증되었다. 나아가 기존의 응력기반 모형과의 성능 비교 결과 제안된 모델은 정확성과 사용 편리성이 모두 우수한 것으로 나타났다.