• Title/Summary/Keyword: Pore shape

Search Result 293, Processing Time 0.022 seconds

Undrained strength-deformation characteristics of Bangkok Clay under general stress condition

  • Yimsiri, Siam;Ratananikom, Wanwarang;Fukuda, Fumihiko;Likitlersuang, Suched
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.419-445
    • /
    • 2013
  • This paper presents an experimental study on the influence of principal stress direction and magnitude of intermediate principal stress on the undrained stress-strain-strength behaviors of Bangkok Clay. The results of torsional shear hollow cylinder and advanced triaxial tests with various principal stress directions and magnitudes of intermediate principal stress on undisturbed Bangkok Clay specimens are presented. The analysis of testing results include: (i) stress-strain and pore pressure behaviors, (ii) stiffness characteristics, and (iii) strength characteristics. The results assert clear evidences of anisotropic characteristics of Bangkok Clay at pre-failure and failure conditions. The magnitude of intermediate principal stress for plane-strain condition is also investigated. Both failure surface and plastic potential in deviatoric plane of Bangkok Clay are demonstrated to be isotropic and of circular shape which implies an associated flow rule. It is also observed that the shape of failure surface in deviatoric plane changes its size, while retaining its circular shape, with the change in direction of major principal stress. Concerning the behavior of Bangkok Clay found from this study, the discussions on the effects of employed constitutive modeling approach on the resulting numerical analysis are made.

Analysis of Printed Image Depending on Mixing Ratios of Softwood and Hardwood fibers Using Image Analyzer and CLSM (화상분석기와 CLSM을 이용한 침.활엽수 섬유의 배합비에 따른 인쇄화상 분석)

  • 이장호;박종문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.25-31
    • /
    • 2002
  • The purpose of this study was to analyze how the fiber properties and mixing ratio of softwood and hardwood pulp affect on roundness of printed image. Softwood pulp and hardwood pulp were refined to 400 and 600ml CSF by Valley beater and handsheets of 70 g/$m^2$ basis weight were made at different mixing ratios of hardwood and softwood pulp. The roundness, dot area, and shape of the printed dot were measured by Image Analyzer. The depths and shapes of the acridine orange penetration into paper were measured by CLSM. With higher mixing ratio of hardwood pulp, the paper showed higher air-permeability and better formation, especially at lower freeness. The roundness of the printed image became better and the dot size became smaller when the amount of hardwood pulp increased. Penetration depth of acridine orange by CLSM became greater and roundness increased to real circle when the amount of hardwood pulp increased. It was thought that higher mixing ratio of hardwood fibers resulted in efficient penetration by better formation with uniform micro-pore distribution and it increased roundness. It was thought that fiber properties and mixing ratio affected the structure of paper and the shape of the printed dot. This study showed that the measurement of depth of the liquid penetration into paper without destruction and contact was feasible. Moreover, this method showed that the shape of the liquid penetration was measurable.

Study of Manufacturing Jewelry Master Pattern by Using the DuraForm Rapid Prototyping Mold and the Low Melting Alloy (쾌속조형 듀라폼몰도와 저융점합금을 이용한 주얼리용 마스터패턴 제작에 관한 연구)

  • Joo, Young-Cheol;Song, Oh-Sung
    • Journal of Korea Foundry Society
    • /
    • v.22 no.5
    • /
    • pp.265-270
    • /
    • 2002
  • A novel jewelry master pattern manufacturing process which reduce manufacturing steps by employing a Duraform rapid prototyping mold and a low melting alloy has been suggested. The novel process follows the steps of 'jewelry 3D CAD design ${\rightarrow}$ Durafrom RP mold ${\rightarrow}$ low melting alloy master pattern' while the previous process follows more complicated steps of 'jewelry idea sketch ${\rightarrow}$ detailed drawing ${\rightarrow}$ wax carving ${\rightarrow}$ flask ${\rightarrow}$ silver master pattern.' An upper and a lower part of molds have been manufactured of Duraform powder, of which melting point is $190^{\circ}C$. A maser pattern was manufactured by pouring a low melting alloy of Pb-Sn-Bi-Cd, so called Woods Metal, of which melting point is $70^{\circ}C$, into the mold. The master pattern is a shape of a disk of 20mm diameter that contains various design factors. The variations of dimensions, surface roughness, surface pore ratio were measured by an optical microscope, a surface roughness profilometer, and a Rockwell hardness tester. The pattern made of were maeasured by an optical microscope, a surface roughness profilometer, and a Rockwell hardness tester. The pattern made of low melting alloy has sufficient surface hardness, and surface pore ratio to be used as the jewelry master pattern.

Bio-barrier Formation by Biomass Injection into Soil (미생물 토양 주입을 통한 Bio-barrier 형성)

  • Kim, Geon-Ha;Song, Youngwoo;Gu, Dongyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.927-938
    • /
    • 2000
  • When microorganism is injected into porous medium such as soils along with appropriate substrate and nutrients, biomass retained in the soil pore. Soil pore size and shape are varied from the initial condition as a result of biofilm formation, which make hydraulic conductivity reduced. In this research, hydraulic conductivity reduction was measured after microorganism are inoculated and cultured with synthetic substrates and nutrients. Biomass-soil mixture was evaluated its applicability to the field condition as an alternative liner material in landfill by measuring hydraulic conductivity change after repetitive freeze-thaw cycles. Resistance of biofilm to chemical solution and degree of biodegradation were measured through column test.

  • PDF

Ultrastructural Changes of Oocyte in Korean Catfish, Silurus asotus (발달 단계에 따른 한국산 메기(Silurus asotus) 난모세포의 미세구조적 변화)

  • 윤종만;김계웅;신호철;장계남;류동석;박홍양
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.2
    • /
    • pp.105-117
    • /
    • 1995
  • This study was carried out to investigate the histomorphological changes and the electrophoretic patterns of egg components, obtained from 100 of 1-year-old female catfish(Silurus asotus). Especially, the light microscopic and ultrastructural changes of ooplasm and follicular membranes of oocytes, were observed by light and transmission electron microscope. All data were collected from October in 1992 to May in 1993. The size of the nucleoli and number of the yolk granules increased as the oocyte grew. Yolk granules were deposited in the oocyte as fluid. Due to the presence of large early and late maturing oocytes, their ovaries were large, transparent, granular, and greenish in color. As the percentages of fish in LMO and RO stage increased from March to April, mean of GSI values(19.95%) increased. Follicle cells such as granulosa cell and thecal cell change a squamous into cuboid shape in LPO and EMO stage. Processes, microvilli, from the granulosa cells and from the oocyte grow and make contact with each other in the pore canals of the zona radiata during vitellogenesis, but are withdrawn as the zona radiate becomes more compact and devoid of pore canals during oocyte maturation. The electrophoretic pattern of major band in mature stage was much thicker(21k, 24k, 32k, 45k, 67∼110k, 170k dalton) than that in previtellogenic phase.

  • PDF

Permeability Reduction of Soils by Biomass Injection (미생물 균체의 주입을 통한 토양의 투수계수 감소)

  • 송영우;김건하;구동영
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.273-283
    • /
    • 1999
  • When microorganism is injected into porous medium such as soils, biomass is retained in the pore. Soil pore size and shape are varied from the initial condition as a result of biofilm formation which makes hydraulic conductivity reduced and friction rate between soil aggregates increased. In this research, hydraulic conductivity reduction was measured after microorganism are inoculated and cultured with synthetic substrate and nutrient. In addition, this research evaluated the applicability of biomass-soil mixture to the field condition as an alternative cover material in landfill by measuring hydraulic conductivity change after repetitive freeze-thaw cycles. Hydraulic conductivity of silty soil decreased by approximately 1/50 after biomass inoculation and cultivation. Biofilm attached on soil aggregates is resistant to acidic or basic condition. After repetitive freeze-thaw cycles, however, hydraulic conductivity increase implies that biomass clogging can be impaired.

  • PDF

Mechanical Characteristic of Backsulgi Added with Rich Sources of Phospholipid (인지방질 함유식품 첨가에 따른 백설기의 물성적 특성)

  • 이경아;김경자
    • Korean journal of food and cookery science
    • /
    • v.18 no.4
    • /
    • pp.381-389
    • /
    • 2002
  • The purpose of this study was to select an ingredient acting as a natural emulsifier to retard the retrogradation of rice cake by the measurement of mechanical characteristics of the cakes. For the purpose, Backsulgi, the most basic type of rice cake, was prepared by adding various ingredients having high contents of lecithin such as raw soybean powder, parched soybean powder, soybean oil, egg yolk powder, and the measurements and observations on the chromaticity, swelling power, pore ratio and cross-section were made. In addition, changes in the textural characteristics of Backsulgi samples were determined while storing them at the temperatures of 4$^{\circ}C$ and 20$^{\circ}C$ for 0, 1, 2 and 3 days. The results of the study were as follows: 1. In terms of chromaticity, the Backsulgi samples added with egg yolk powder, raw soybean flour and parched soybean flour were higher in yellowness(b) than the controls. 2. Both swelling power and pore ratio of Backsulgies added with raw soybean flour were higher than those of controls. 3. A cross-sectional observation using an electron microscope indicated that rice flour particles of controls had uneven pores and were conglomerated in a large lump while Backsulgi samples of raw soybean flour or roasted soybean flour had large and even pores and showed loosened bonding to be transformed into a sponge shape. 4. In hardness, Backsulgi samples added with raw soybean flour had less changes in hardness than that of controls, indicating that the effect of retarding retrogradation was higher when the storage time got longer.

Fabrication of 3-dimensional Sn-C Composites Using Microsphere (미소구체를 이용한 3차원 Sn-C 복합체 제조)

  • Park, Bo-Gun;Kim, Seuk-Buom;Park, Yong-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.741-746
    • /
    • 2010
  • Three-dimensionally ordered macro-porous Sn-C composites were prepared by using polystyrene microsphere as a template. The Sn-C composites were composed of well-interconnected pore with circular shape and wall structure with wall thickness of a few tens of nano-meters. This porous three-dimensional structure is readily and uniformly accessible to the electrolyte, which facilitates lithium ion diffusion during charge-discharge reactions. The wall thickness of the composites was increased as the increase of Sn content of the composite. From EDS analysis, it is confirmed that the Sn was dispersed uniformly in Sn-C composites. The capacity was increased as the Sn content increased, which is due to Sn anode with high capacity. The Sn-C composites with high Sn content showed superior cyclic performances. Such enhancement is ascribed to the thick wall thickness and small pore size of the sample with high Sn content. The Sn-C composite with Sn 30 wt% showed relatively high capacity and stable cycle life, however, the stability of the 3-dimensional structure should be enhanced by further work.

Calculation of Poroelastic Parameters of Porous Composites by Using Micromechanical Finite Element Models (미시역학적 유한요소 모델을 이용한 다공성 복합재료의 기공 탄성 인자 산출)

  • Kim, Sung-Jun;Han, Su-Yeon;Shin, Eui-Sup
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • In order to predict the thermoelastic behavior of porous composites, poroelastic parameters are measured by using micromechanics-based finite element models. The expanding deformation caused by pore pressure, and the degradation of homogenized elastic moduli with pores are calculated for the assessment of the poroelastic parameters. Various representative volume elements considering the shape, size, and array pattern of pores are modeled and analyzed by a finite element method. The effects of porosity and material anisotropy, and the distribution of stain energy density are investigated carefully. In addition, the measured poroelastic parameters are verified by predicting the thermo-pore-elastic behavior of carbon/phenolic composites.

AAO Template Morphology Controlled by Variation of Anodizing Condition (양극 산화 조건 변화에 따른 AAO Template Morphology 제어)

  • Jo, Ye-Won;Lee, Sung-Gap;Kim, Kyeong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.249-251
    • /
    • 2015
  • In this study, the application of biosensor having a large surface area for more effective and AAO (anomic aluminium oxide) template in order to gain concentration and voltage of anodizing process morphology changes to the control of experiments were conducted. The biosensor surface may increase the response characteristics by having a large surface area. So the entrance to a little more efficient wide depth sensing experiment was carried out to obtain a structure body with a branch shape with a large surface area with increasing. Experimental results from the FE-SEM observation was obtained template morphology. As a result, depending on the anodizing time, the depth of the layer of aluminum oxide was found that it was confirmed that the deepening of the pore size changes according to anodizing condition. And measuring the detection performance according to the conditions in the electrolyte and the reaction because of blood using a biosensor measuring sensing property according to the depth of the pore depth is considered that does not have a significant impact.