• Title/Summary/Keyword: Pore pressure parameters

Search Result 130, Processing Time 0.022 seconds

Analysis of Impact Response in a Poroelastic Spinal Motion Segment FE Model according to the Disc Degeneration (다공탄성체 척추운동분절 유한요소 모델에서 추간판의 변성이 충격 거동에 미치는 영향 해석)

  • 김영은;박덕용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.188-193
    • /
    • 2003
  • To predict changes in biomechanical parameters such as intradiscal pressure, and the shock absorbing mechanism in the spinal motion segment under different impact duration/loading rates, a three dimensional L3/L4 motion segment finite element model was modified to incorporate the poroelastic properties of the motion segment. The results were analyzed under variable impact duration for normal and degenerated discs. For short impact duration and a given maximum compressive force, relatively high cancellous pore pressure was generated as compared with a case of long impact duration, although the amount of impulse was increased. In contrast relatively constant pore pressure was generated in the nucleus. Disc degeneration increased pore pressure in the disc and decreased pore pressure in the cancellous core, which is more vulnerable to compressive fracture compared with intact case.

Theoretical Analysis of the Pressure Drop in Loop Heat Pipe by Sintered Porous Wick Structure (다공성소결윅구조에 따른 루프 히트파이프에서 압력손실의 이론적 분석)

  • Lee, K.W.;Lee, W.H.;Park, K.H.;Lee, K.J.;Chun, W.P.;Ihn, H.M.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1225-1230
    • /
    • 2004
  • In this paper, the pressure drops were investigated according to the sintered porous wick structure in loop heat pipe(LHP) by theoretical analysis. LHP has the wick only in evaporator for the circulation of working fluid, so utilizes porous wick structure which pore diameter is very small for large capillary force. This paper investigates the effects of different parameters on the pressure drops of the LHP such as particle diameter of sintered porous wick, wick porosity, vapor line diameter, thickness of wick and heating capacity. Working fluid is water and the material of sintered porous wick is copper. According to the these different parameters, capillary pressure, pressure drop in wick were analized by theoretical design method of LHP.

  • PDF

Study on the Undrained Strength Characteristics of Fiber Mixed Clay (섬유혼합 점토의 비배수 강도 특성에 대한 연구)

  • 박영곤;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.382-387
    • /
    • 1998
  • Triaxial compression tests were run to study on the undrained strength characteristics of fiber mixed kaolin clay(Hadong). The influence of various test parameters such as amount and aspect ratio(ratio of length to diameter) of fiber, confining stress was also investigated. Test results showed that the increase in aspect ratio was increased in deviator stress at failure, but no effect on pore water pressure at failure. Deviator stress at failure was also increased at 0.5% mixing ratio(weight fraction of fiber to that of soil solid) of fiber but it was, thereafter, decreased and wits reached to constant after 2% mixing ratio. On the contrary, Pore water pressure at failure was increased as mixing ratio of fiber was greater than 1%. Deviator stress and pore water pressure of both clay and fiber mixed clay(FMC) at failure were increased as confining stress was increased. Deviator stress of FMC at failure was about 10% larger than that of clay, but pore water pressure of FMC at failure was almost similar to that of clay.

  • PDF

Shear strength characteristics of a compacted soil under infiltration conditions

  • Rahardjo, H.;Meilani, I.;Leong, E.C.;Rezaur, R.B.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.35-52
    • /
    • 2009
  • A significantly thick zone of steep slopes is commonly encountered above groundwater table and the soils within this zone are unsaturated with negative pore-water pressures (i.e., matric suction). Matric suction contributes significantly to the shear strength of soil and to the factor of safety of unsaturated slopes. However, infiltration during rainfall increases the pore-water pressure in soil resulting in a decrease in the matric suction and the shear strength of the soil. As a result, rainfall infiltration may eventually trigger a slope failure. Therefore, understanding of shear strength characteristics of saturated and unsaturated soils under shearing-infiltration (SI) conditions have direct implications in assessment of slope stability under rainfall conditions. This paper presents results from a series of consolidated drained (CD) and shearing-infiltration (SI) tests. Results show that the failure envelope obtained from the shearing-infiltration tests is independent of the infiltration rate. Failure envelopes obtained from CD and SI tests appear to be similar. For practical purposes the shear strength parameters from the CD tests can be used in stability analyses of slopes under rainfall conditions. The SI tests might be performed to obtain more conservative shear strength parameters and to study the pore-water pressure changes during infiltration.

Comparison of Characterization Techniques of the Pore in Paper Sheet (종이의 기공 특성 측정 기법의 비교)

  • Won, Jong-Myoung;Nam, Ki-Young;Chung, Soon-Ki
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.1-6
    • /
    • 2007
  • Paper is a composite consisted of various solid materials including pulp, filler and other additives. The pore is also one of components consisting the paper structure. Thus the characterization of pore structure of paper is very helpful in the understanding the structural properties of paper. Mercury intrusion technique is frequently used for the characterization of the porous paper, giving access to parameters such as pore size and pore distribution. But some researchers pointed out the problem that the distortion of the pore structure can be occurred by the application of high pressure during mercury intrusion. Thus in this study, we tried to evaluate the potential of SEM and image analysis method as means for analyzing pore structure of the paper. The new pore analysis technique with SEM and image analysis does not require the application of high pressure, and gave better relation between the measured pore characteristics and the bulk of sheet than mercury intrusion method.

Pore network approach to evaluate the injection characteristics of biopolymer solution into soil

  • Jae-Eun Ryou;Beomjoo Yang;Won-Taek Hong;Jongwon Jung
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.51-62
    • /
    • 2024
  • Application of biopolymers to improve the mechanical properties of soils has been extensively reported. However, a comprehensive understanding of various engineering applications is necessary to enhance their effectiveness. While numerous experimental studies have investigated the use of biopolymers as injection materials, a detailed understanding of their injection behavior in soil through numerical analyses is lacking. This study aimed to address this gap by employing pore network modeling techniques to analyze the injection characteristics of biopolymer solutions in soil. A pore network was constructed from computed tomography images of Ottawa 20-30 sand. Fluid flow simulations incorporated power-law parameters and governing equations to account for the viscosity characteristics of biopolymers. Agar gum was selected as the biopolymer for analysis, and its injection characteristics were evaluated in terms of concentration and pore-size distribution. Results indicate that the viscosity properties of biopolymer solutions significantly influence the injection characteristics, particularly concerning concentration and injection pressure. Furthermore, notable trends in injection characteristics were observed based on pore size and distribution. Importantly, in contrast to previous studies, meaningful correlations were established between the viscosity of the injected fluid, injection pressure, and injection distance. Thus, this study introduces a novel methodology for integrating pore network construction and fluid flow characteristics into biopolymer injections, with potential applications in optimizing field injections such as permeation grouting.

Face stability analysis of rock tunnels under water table using Hoek-Brown failure criterion

  • Li, T.Z.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.235-245
    • /
    • 2019
  • This paper presents a novel methodology for face stability assessment of rock tunnels under water table by combining the kinematical approach of limit analysis and numerical simulation. The tunnels considered in this paper are excavated in fractured rock masses characterized by the Hoek-Brown failure criterion. In terms of natural rock deposition, a more convincing case of depth-dependent mi, GSI, D and ${\sigma}_c$ is taken into account by proposing the horizontally layered discretization technique, which enables us to generate the failure surface of tunnel face point by point. The vertical distance between any two adjacent points is fixed, which is beneficial to deal with stability problems involving depth-dependent rock parameters. The pore water pressure is numerically computed by means of 3D steady-state flow analyses. Accordingly, the pore water pressure for each discretized point on the failure surface is obtained by interpolation. The parametric analysis is performed to show the influence of depth-dependent parameters of $m_i$, GSI, D, ${\sigma}_c$ and the variation of water table elevation on tunnel face stability. Finally, several design charts for an undisturbed tunnel are presented for quick calculations of critical support pressures against face failure.

Applications of Disturbed State Concept for the dynamic behaviors of fully saturated soils (포화사질토의 동적거동규명을 위한 교란상태개념의 이용)

  • 최재순;박근보;서경범;김수일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.140-147
    • /
    • 2003
  • There are many problems in the prediction of soil dynamic behaviors because undrained excess pore water pressure builds up and then the strain softening behavior is occurred simultaneously. A few analytical methods based on the dynamic constitutive model have been proposed but the model hardly predict the excess pore water pressure directly. In this study, the verification on the disturbed state concept (DSC) model, proposed by Dr, Desai was performed. Some laboratory tests such as conventional triaxial tests and cyclic triaxial tests were carried out to determine DSC Parameters and then disturbance values are determined by the proposed equation. Through this verification, it is proved that the disturbed state concept can express reliably the soil dynamic characteristics such as excess pore water pressure and strain softening behavior. It is also found that the critical disturbance which is determined at the minimum curvature of disturbance function can be a the specific index.

  • PDF

Modified Disturbed State Concept for Dynamic Behaviors of Fully Saturated Sands (포화사질토의 동적거동규명을 위한 수정 교란상태개념)

  • 최재순;김수일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.107-114
    • /
    • 2003
  • There are many problems in the prediction of dynamic behaviors of saturated soils because undrained excess pore water pressure builds up and then the strain softening behavior is occurred simultaneously. A few analytical constitutive models based on the effective stress concept have been proposed but most models hardly predict the excess pore water pressure and strain softening behaviors correctly In this study, the disturbed state concept (DSC) model proposed by Dr, Desai was modified to predict the saturated soil behaviors under the dynamic loads. Also, back-prediction program was developed for verification of modified DSC model. Cyclic triaxial tests were carried out to determine DSC parameters and test result was compared with the result of back-prediction. Through this research, it is proved that the proposed model based on the modified disturbed state concept can predict the realistic soil dynamic characteristics such as stress degradation and strain softening behavior according to dynamic process of excess pore water pressure.

  • PDF

A Probabilistic Analysis of Liquefaction Potential and Pore Water Pressure Build up due to Earthquake (지진하중에 의한 액화의 가능성과 간극수압의 발생에 관한 확률론적 연구)

  • Kim, Young-Su;Lee, Song;Cho, Woo-Chul
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.31-44
    • /
    • 1992
  • The probabilistic and statistical model is used to estimate the probability of liquefaction potential and pore water pressure build up due to earthquake in fully saturated sand deposit for each case of being structure(anisotropic) or not(isotropic). To execute this paper, dynamic shear strength parameters to show the relationship between shear strength and cyclic loading under isotropic or anisotropic condition in saturated sand deposit are presented. Using these parameters, the program which Predicts Pore water Pressure build up due to earthquake is developed. Using the 3-dimensional Random Field Model considering uncertainty of resistance and strength parameter, the program which computes the probability of liquefaction potential is developed. The developed program is applied to a case study, and then the result shows that the probability of liquefaction in isotropic condition is higher than in anisotropic condition. The ratio of pore water pressure tends to decrease as Kc increases.

  • PDF