• 제목/요약/키워드: Pore pressure

검색결과 1,286건 처리시간 0.025초

NATM 터널의 배수시스템 수리기능저하가 터널 라이닝에 미치는 영향 (An Experimental Study on the Effect of Malfunctioning of Drainage System on NATM Tunnel Linings)

  • 신종호;권오엽;신용석;양유홍
    • 한국지반공학회논문집
    • /
    • 제23권6호
    • /
    • pp.77-84
    • /
    • 2007
  • 유입량과 라이닝에 작용하는 간극수압은 터널 설계시 고려해야 할 중요한 요소 중 하나이다. 간극수압의 발생은 누수를 가속화시키며 라이닝 열화를 초래한다. 본 논문에서는 모형실험을 통하여 배수시스템 기능저하로 인한 간극수압의 발생과 그 영향을 조사하였다. 배수시스템 기능저하거동은 배수재의 투수계수제어법과 유량 조절법으로 모사화 하여 터널 라이닝의 잔류수압발생 메카니즘을 확인하였다. 또한, 유량제어법이 배수시스템 기능저하현상을 모사하기에 보다 더 효과적인 방법임을 알 수 있었다. 모형실험을 수치해석으로 재현한 결과, 배수시스템 기능저하로 인한 영향을 Coupled 수치 모델링을 통해 이론적으로 예측 가능함을 확인할 수 있었다.

PORE PRESSURE AND EFFECTIVE STRESS IN THE SATURATED SAND-BED UNDER THE VARIATION OF WATER PRESSURE

  • HoWoongShon
    • 지구물리
    • /
    • 제6권2호
    • /
    • pp.107-119
    • /
    • 2003
  • The behavior of pore pressure and effective stress in a highly saturated sand bed under variations in the water pressure in its surface were investigated to determine the mechanism of the collapse of hydraulic structures during flooding or when attacked by storm waves. The vertical, one-dimensional model was used as a basic model to clarify the effect of water pressure variation on only to the vertical direction. The theoretical results show that a sand bed under variations of water pressure is weakened by an increase in excess pore pressure and that under certain conditions the sand bed will liquefy. Although many factors related to water pressure variation and property of the material determine this phenomenon, the mist important factor seems to be the small amount of air present in the sand bed. The theoretical results reported are verified by experiments.

  • PDF

발파하중이 인접 댐에 미치는 진동영향에 대한 연계해석적 검토 (Coupled analysis for the influence of blasting-induced vibration on adjacent dam)

  • 박인준;김성인;남기천;곽창원
    • 한국터널지하공간학회 논문집
    • /
    • 제6권1호
    • /
    • pp.41-50
    • /
    • 2004
  • 본 논문에서는 기존댐 인접지에 터널구조물을 건설하기 위한 발파시, 폭괴하중으로 인한 지반진통이 댐 제체와 간극수암에 마치는 영향을 고찰하였다. 댐의 안정성 검토는 발파시 발생하는 코어부의 최대입자속도 (Peak Particle Velocity)를 계산하여 수행하였다. 간극수와 지반진동간의 상호 연계해석을 위하여 댐 제체에 대한 정상상태 흐름해석을 수행하여 간극수압 분포를 파악하고, 유발된 과잉간극수암 및 유효응력분포로 발파하중이 인접지반에 미치는 영향을 분석하였다. 또한 발파와 같은 급속하중 재하 후 과잉간극수압의 증가 및 소산현상 해석을 위하여 Finn & Byrne Model을 적용하여 하중재하 전후의 유효응력 변화양상을 검토하였다.

  • PDF

연약지반상에 축조된 농업용저수지의 과잉공극수압 예측과 압밀계수의 비교 (Comparison of Coefficient of Consolidation and Prediction of Excess Pore Water Pressure of Agricultural Reservoir under Embankment on Soft Ground)

  • 이달원;김은호
    • 한국농공학회논문집
    • /
    • 제52권2호
    • /
    • pp.1-9
    • /
    • 2010
  • This study was carried out to comparison of coefficient of consolidation and the prediction of excess pore water pressure in agricultural reservoir on soft clay ground. For the purpose of verification of the proposed equation, laboratory model tests and field tests were performed and excess pore water pressure was compared to those predicted with the Terzaghi's method. The predicted excess pore water pressure according to ponding was very applicable to practice because it was close to the observed data. Also, for the comparison of coefficient of consolidation, the oedometer, constant rate of strain (CRS), and Rowe cell tests were performed. The coefficient of consolidation at the Rowe cell and CRS tests showed a greate increase than in the oedometer test. The ratio of the vertical and horizontal coefficient of consolidation showed a large difference according to various tests method and mixing ratio. Therefore, it is recommended that careful attention should be paid to predicting the required consolidation period in agricultural reservoir.

Characteristics of failure surfaces induced by embankments on soft ground

  • Hong, Eun-Soo;Song, Ki-Il;Yoon, Yeo-Won;Hu, Jong-Wan
    • Geomechanics and Engineering
    • /
    • 제6권1호
    • /
    • pp.17-31
    • /
    • 2014
  • This paper investigates the development of failure surfaces induced by an embankment on soft marine clay deposits and the characteristics of such surfaces through numerical simulations and its comparative study with monitoring results. It is well known that the factor of safety of embankment slopes is closely related to the vertical loading, including the height of the embankment. That is, an increase in the embankment height reduces the factor of safety. However, few studies have examined the relationship between the lateral movement of soft soil beneath the embankment and the factor of safety. In addition, no study has investigated the distribution of the pore pressure coefficient B value along the failure surface. This paper conducts a continuum analysis using finite difference methods to characterize the development of failure surfaces during embankment construction on soft marine clay deposits. The results of the continuum analysis for failure surfaces, stress, displacement, and the factor of safety can be used for the management of embankment construction. In failure mechanism, it has been validated that a large shear displacement causes change of stress and pore pressure along the failure surface. In addition, the pore pressure coefficient B value decreases along the failure surface as the embankment height increases. This means that the rate of change in stress is higher than that in pore pressure.

잔류 과잉공극수압이 지진 하중을 받는 사면의 안정에 미치는 영향 (Effect of the Residual Excess Pore Water Pressure on the Slope Stability Subjected to Earthquake Motion)

  • 이준대;권영철;배우석
    • 한국안전학회지
    • /
    • 제21권2호
    • /
    • pp.107-113
    • /
    • 2006
  • Earthquake motion is one of the most significant influence factors on the slope stability. In this paper, an effective stress analysis with the elasto-plastic model was carried out to investigate the behavior of the slope stability subjected to the successive two strong earthquake motions, fore and main shock. The major influence of fore shock to the slope stability was considered as the existence of the residual excess pore water pressure. The paper presents the influence of the existence of the fore shock to slope stability using the numerical analyses. In conclusion, the excess pore pressure by the fore shock was not dissipated during the 7hrs of consolidation. By this residual excess pore water pressure, the factor of safety at the sliding face showed the minimum values, and the deformations of slope was large when compared with the case that considered the main shock only. Furthermore, the minimum of the factor of safety came out after the end of the earthquake motion.

액상화된 모래지반의 과잉간극수압 소산모델 개발 (Development of Dissipation Model of Excess Pore Pressure in Liquefied Sand Ground)

  • 김성렬;황재익;고혼임;김명모
    • 한국지반공학회논문집
    • /
    • 제23권10호
    • /
    • pp.13-22
    • /
    • 2007
  • 최근 액상화 이후의 구조물 거동에 관심이 높아지면서, 액상화 지반의 과잉간극수압 소산에 대한 연구가 활발히 이루어지고 있다. 본 연구에서는 포화된 수평모래지반에 대한 원심모형실험을 수행하여 액상화 이후의 과잉간극수압 소산거동을 계측하고 계측결과를 바탕으로 견고화층의 비선형적인 두께 변화에 대한 예측모델을 제안하였다. 기존의 침강이론과 압밀이론에 이 예측모델을 결합함으로써 과잉간극수압 소산을 모델링하는 새로운 소산 예측모델을 개발하였다. 개발된 소산모델은 원심모형실험 결과와 비교하여 견고층 두께 증가와 과잉간극수압 소산양상을 잘 모사하는 것으로 나타났다.

연약지반에서 예측 거동과 계측 결과 분석 (Prediction and Measurement of Behaviour of Soft Soil Deposits)

  • 김윤태
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.351-362
    • /
    • 2007
  • Predicted behaviour of a soft clay deposit in design stage is sometimes different from in-situ settlement and pore pressure measured during and after construction. In this paper, characteristics of settlement and pore pressure occurred in soft soil deposits were investigated briefly in order to get a better understanding of time-dependent viscoplastic behaviour and prevent geotechnical problems resulted from long-term settlement, differential settlement, etc.

  • PDF

재하속도에 따른 압밀특성에 관한 실험적 고찰 (An Experimental Study on the Consolidation Characteristics with Loading Rate)

  • 채점식;소충섭;이송
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1070-1077
    • /
    • 2005
  • The purpose of this study is to establish a proper criterion for the constant rate of loading consolidation(CRLC) test which is a kind of the continuous loading consolidation(CLC) and widely used as alternative methods to the incremental loading consolidation(ILC)test. With those results, the preconsolidation pressure estimated by the CRLC test turned out to be comparatively larger than that of the ILC test, and it is increased in proportion to the applied loading rates. However, the compression index in the CRLC test is less influenced on by the loading rates. The coefficient of consolidation and permeability in the CRLC test are dependent on excess pore pressure ratio mainly. In other words, if the pore pressure ratios are too low, the coefficient of consolidation and permeability become smaller than those of the ILC test. On the other hand, if the excess pore pressure ratios are too high, the coefficient of consolidation and permeability become so larger than those of the ILC test. Therefore, loading rates should be carefully determined to generate proper excess pore pressure ratio inside the soil specimen. From this study, good results are obtained from the CRLC test if the excess pore pressure ratios were in the range of 2.5 to 6.0 %, performed with loading rates between 0.0015 and 0.005 $kgf/cm^2/min$.

  • PDF

파랑-구조물-지반 상호작용에 의한 혼성제 주변 해저지반의 3차원 동적응답 특성 (3-D Dynamic Response Characteristics of Seabed around Composite Breakwater in Relation to Wave-Structure-Soil Interaction)

  • 허동수;박종률;이우동
    • 한국해양공학회지
    • /
    • 제30권6호
    • /
    • pp.505-519
    • /
    • 2016
  • If the seabed is exposed to high waves for a long period, the pore water pressure may be excessive, making the seabed subject to liquefaction. As the water pressure change due to wave action is transmitted to the pore water pressure of the seabed, a phase difference will occur because of the fluid resistance from water permeability. Thus, the effective stress of the seabed will be decreased. If a composite breakwater or other structure with large wave reflection is installed over the seabed, a partial standing wave field is formed, and thus larger wave loading is directly transmitted to the seabed, which considerably influences its stability. To analyze the 3-D dynamic response characteristics of the seabed around a composite breakwater, this study performed a numerical simulation by applying LES-WASS-3D to directly analyze the wave-structure-soil interaction. First, the waveform around the composite breakwater and the pore water pressure in the seabed and rubble mound were compared and verified using the results of existing experiments. In addition, the characteristics of the wave field were analyzed around the composite breakwater, where there was an opening under different incident wave conditions. To analyze the effect of the changed wave field on the 3-D dynamic response of the seabed, the correlation between the wave height distribution and pore water pressure distribution of the seabed was investigated. Finally, the numerical results for the perpendicular phase difference of the pore water pressure were aggregated to understand the characteristics of the 3-D dynamic response of the seabed around the composite breakwater in relation to the water-structure-soil interaction.