• Title/Summary/Keyword: Pore former

Search Result 70, Processing Time 0.023 seconds

Optimized Synthesis Conditions of Polyethersulfone Support Layer for Enhanced Water Flux for Thin Film Composite Membrane

  • Son, Moon;Choi, Hyeongyu;Liu, Lei;Park, Hosik;Choi, Heechul
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.339-344
    • /
    • 2014
  • Different types of polyethersulfone (PES) support layer for a thin film composite (TFC) membrane were synthesized under various synthesis conditions using the phase inversion method to study the combined effects of substrate, adhesive, and pore former. The permeability, selectivity, pore structure, and morphology of the prepared membranes were analyzed to evaluate the membrane performance. The combined use of substrate, adhesive, and pore former produced a thinner dense top layer, with more straight finger-like pores. The pure water permeation (PWP) of the optimized PES membrane was $27.42L/m^2hr$ (LMH), whereas that of bare PES membrane was 3.24 LMH. Moreover, membrane selectivity, represented as divalent ion ($CaSO_4$) rejection, was not sacrificed under the synthesis conditions, which produced the dramatically enhanced PWP. The high permeability and selectivity of the PES membrane produced under the optimized synthesis conditions suggest that it can be utilized as a potential support layer for TFC membranes.

Microstructure and Permeability Property of Si Bonded Porous SiC with Variations in the Carbon Content (Si 결합 다공성 탄화규소의 미세구조 및 통기도 특성 -카본 함량 변화 중심)

  • Song, In-Hyuck;Park, Mi-Jung;Kim, Hai-Doo;Kim, Young-Wook;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.546-552
    • /
    • 2010
  • The achievement of high gas permeability is a key factor in the development of porous SiC ceramics for applications of hot gas filter, vacuum chuck, and air spindle. However, few reports on the gas permeability of porous SiC ceramics can be found in the literature. In this paper, porous SiC ceramics were fabricated at temperatures ranging from $1600^{\circ}C$ to $1800^{\circ}C$ using the mixing powders of SiC, silicon, carbon and boron as starting materials. In some samples, expanded hollow microspheres as a pore former were used to make a cellular pore structure. It was possible to produce Si bonded SiC ceramics with porosities ranging from 42% to 55%. The maximum bending strength was 58MPa for the carbon content of 0.2 wt% and sintering temperature of $1700^{\circ}C$. The increase of air permeability was accelerated by addition of hollow microsphere as a pore former.

Properties of Low Temperature Sintered Porous Ceramics from Alumina-Zinc Borosilicate Glass (알루미나-아연붕규산염 유리를 이용한 저온 소결 다공성 세라믹스의 제조 및 특성)

  • Kim, Kwan-Soo;Song, Ki-Young;Park, Sang-Yeup;Kim, Shin;Kim, Sung-Jin;Yoon, Sang-Ok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.609-614
    • /
    • 2009
  • The low-temperature preparation of porous ceramics was carried out using mixtures of alumina-zinc borosilicate (ZBS) glass. The compositions of alumina-ZBS glass mixture with PMMA pore-former were unfortunately densified. Because PMMA was evaporated below the softening point of ZBS glass ($588{^{\circ}C}$), the densification through the pore-filling caused by the capillary force might occur. Howerver, those with carbon possessed pores where carbon was evaporated above the softening point. The porous ceramic having 35% porosity was successively fabricated by the low-temperature sintering process below $900{^{\circ}C}$ using 45 vol% of alumina, 45 vol% ZBS of glass, and 10 vol% of carbon as starting materials.

Slippage on which interface in nanopore filtration?

  • Xiaoxu Huang;Wei Li;Yongbin Zhang
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • The flow in a nanopore of filtration membrane is often multiscale and consists of both the adsorbed layer flow and the intermediate continuum fluid flow. There is a controversy on which interface the slippage should occur in the nanopore filtration: On the adsorbed layer-pore wall interface or on the adsorbed layer-continuum fluid interface? What is the difference between these two slippage effects? We address these subjects in the present study by using the multiscale flow equations incorporating the slippage on different interfaces. Based on the limiting shear strength model for the slippage, it was found from the calculation results that for the hydrophobic pore wall the slippage surely occurs on the adsorbed layer-pore wall interface, however for the hydrophilic pore wall, the slippage can occur on either of the two interfaces, dependent on the competition between the interfacial shear strength on the adsorbed layer-pore wall interface and that on the adsorbed layer-continuum fluid interface. Since the slippage on the adsorbed layer-pore wall interface can be designed while that on the adsorbed layer-continuum fluid interface can not, the former slippage can result in the flux through the nanopore much higher than the latter slippage by designing a highly hydrophobic pore wall surface. The obtained results are of significant interest to the design and application of the interfacial slippage in nanoporous filtration membranes for both improving the flux and conserving the energy cost.

PORE WATER PRESSURE IN SAND BED UNDER OSCILLATING WATER PRESSURE

  • HoWoongShon
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.57-69
    • /
    • 2003
  • In this paper the theoretical method to analyse the pore water pressures in the bed under the oscillating water pressure is developed. In the former researches the validity of the theoretical treatment for the one-dimensional problem has been verified. However, the one-dimensional treatment is not sufficient to obtain the precise information concerning the many practical problems. From this point of view, in this study, we derive the fundamental equations for the general three-dimensional sand layer under the oscillating water pressure. The validity of this theoretical method is verified by experiments for the two-dimensional problems.

  • PDF

Effect of Hydrolytic Temperature on Pore Structure of Alkoxide-derived Aluminas (Alkoxide 법으로 합성한 알루미나의 동공구조에 미치는 가수분해 온도의 영향)

  • 조정미;정필조
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.217-224
    • /
    • 1988
  • Pore structures of Alkoxide-derived aluminas are investigated by BET Nitrogen Sorption method. Aluminas are derived from hydrolysis of aluminum isopropoxide at 3$^{\circ}$and 8$0^{\circ}C$ with stoichiometric quantities of water in use. The resulting hydrolysates are then subjected to thermal treatment for a fixed period of time from 200$^{\circ}$to 50$0^{\circ}C$ in gradual fashions. The hydrolysates obtained at 3$^{\circ}C$ increase their pore volumes with increasing heat treatment, exhibiting their pore-size distributio as twinpeaked. In contrast, the reverse is true to the hydrolysates obtained at 8$0^{\circ}C$, showing their pore size distribution as single-peaked. This suggests that the pore shapes of the former shall be slit-shaped, whilst whose as the latter shall be of a ink-bottle shape. All the evidence indicates that the hydrolytic temperatures play an important role not only in determining the pore shapes of the alumina samples, but in controlling the liberation of structural water in the alumina layers. It is also, surmized that the subsequent heat treatment may at best affect the mode of pore size distribution for the resulting alumina product(s).

  • PDF

Analysis of the Behavior of Undrained Pore Water Pressure in Saturated Sand by Isotropic Loading Test (포화된 사질토에서 등방재하시험에 의한 비배수 공극수압의 거동분석)

  • Eam, Sung-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.43-52
    • /
    • 2005
  • It is known in some literatures that the B value is not equal to unity in saturated soil when effective stress is given, in which the B Value is the ratio of measured excess pore water pressure and isometric loading pressure. In this study the B value was measured on various effective stresses and on various incremental loading stresses in various grain size of specimens with saturated sand. The test results showed that the B value was affected largely by grain size of sand in specimen and the amount of effective stress. There was the semi-logarithmic relationship between B value and effective stress, and also there was the linear relationship between the gradient of the former semi-logarithmic relationship and grain size of specimen.

The Effect of BSA on the Release of Cefadroxil from a Polycaprolactone Matrix (폴리카프로락톤 매트릭스로부터 세파드록실의 방출에 미치는 BSA의 영향)

  • Kim, Seung-Ryul;Jung, Yun-Jin;Kim, Young-Mi;Lee, Chi-Ho;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.5
    • /
    • pp.363-368
    • /
    • 2004
  • In order to investigate the effect of bovine serum albumin (BSA), as a pore former, on the controlled release of an antibiotic from a biodegradable polymeric device, polycaprolactone (PCL)-cefadroxil matrices were prepared by the solvent casting method. The amount of cefadroxil released from various formulations at $37^{\circ}C$ was measured by HPLC. The duration of antimicrobial activity of matrices against S. aureus was evaluated by measuring the diameters of the inhibition zone. The morphology of the matrices was investigated by scanning electron microscopy (SEM). The release rate and extent of cefadroxil from PCL matrix increased as the loading dose and particle size of BSA/cefadroxil mixture powder increased. Cefadroxil released from the matrix exhibited antibacterial activity for up to 4 days. SEM of the cross-section of matrix showed the typical channel formation after 3 days of release study. Thus, a biodegradable polymeric matrix loaded with antibiotic/BSA mixture can effectively prevent bacterial infection on its surface, thereby bringing about an enhancement of biocompatibility of biomaterials.

The Effect of Fabrication Methods on the Release of Cefadroxil from a Polyurethane Matrix (세파드록실의 방출에 미치는 폴리우레탄 매트릭스 제조방법의 영향)

  • Kim, Seung-Ryul;Lee, Sun-Hee;Kim, Dae-Duk;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.2
    • /
    • pp.93-98
    • /
    • 2000
  • In order to evaluate the effect of fabrication methods on the controlled release of an antibiotic from a polymeric device, two types of polyurethane-cefadroxil matrix were prepared by the solvent casting method or the freeze drying method, using bovine serum albumin as a pore former. The amount of cefadroxil released from various formulations at $37^{\circ}C$ was measured by HPLC. The duration of antimicrobial activity of matrices against S. aureus was evaluated by measuring the diameters of the inhibition zone. The morphology of the matrices was investigated by scanning electron microscopy (SEM). Changing the fabrication method could alter the release rate of cefadroxil from the matrix. The matrix fabricated by the freeze drying method had more porous inner structure and showed higher release rate than that prepared by the solvent casting method. However, the duration of antimicrobial activity was shorter when the matrix was fabricated by the freeze drying method.

  • PDF

Investigation on the Pore Properties of the Microcellular ZrO2 Ceramics Using Hollow Microsphere (중공형 미세구를 이용한 마이크로셀룰라 지르코니아의 가공 특성 고찰)

  • Lee, Eun-Jung;Song, In-Hyuek;Kim, Hai-Doo;Kim, Young-Wook;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.108-115
    • /
    • 2009
  • In this study, a novel-processing route for producing microcellular zirconia ceramics has been developed. The proposed strategy for making the microcellular zirconia ceramics involves hollow microsphere as a pore former which has extremely low density of $0.025\;g/cm^3$. Effects of hollow microsphere content and sintering temperature on microstructure, porosity, pore distribution, and compressive strength were investigated in the processing of microcellular zirconia ceramics. By controlling the content of hollow microsphere, it was possible to make the porous zirconia ceramics with porosities ranging from 45% to 75%. Typical compressive strength value of microcellular zirconia ceramics with ${\sim}65%$ porosity was over 50 MPa. By adjusting the mixing ratio of large and small zirconia powders, it was possible to control the pore structure from close to open pores.